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Section I: Introduction

This manual describes how to conduct a power aisalgr individual and group
randomized trials. The manual includes an ovenoéeach design, the appropriate statistical
model, and, for each, the calculation of statisfpoaver and minimum detectable effect size. The
manual also explains how to use the Optimal DeSigftware Version 2.0 for planning
adequately powered experiments. The manual isefividto 5 sections. Section 1 provides a
brief introduction to power analysis, describeswagous designs available in the software, and
describes the setup of the software. We recomnteatdisers read Section 1 first to understand
the main features of the program. Sections 2 thrdudescribe particular modules in the
software and are stand-alone chapters that ardisge@articular research designs. Appendix A

is also a stand-alone piece that describes powendta-analysis.



1.0 Statistical power

Power is the probability of rejecting the null hyjpesis when a specific alternative
hypothesis is true. In a study comparing two groppsver is the chance of rejecting the null
hypothesis that the two groups share a common ptpalmean and therefore claiming that
thereis a difference between the population means ofwegroups, when in fact there is a
difference of a given magnitude. It is thus thend®aof making the correct decision, that the two
groups are different from each other. Power isdthto discussions of hypothesis testing and
significance levels, so it is important to havdemac definition of each of these terms before
proceeding. Note that in a perfectly implementedicanized experiment with correctly analyzed
data, power is the probability of discovering asaeffect of treatment when such an effect
truly exists.

In hypothesis testing, there are two hypotheseslldnypothesis and an alternative
hypothesis. In a two-treatment design, the mostrecomnull hypothesis states that there is no
difference between the population means of thertreat and control groups on the outcome of
interest. The alternative hypothesis states thattls a difference between groups. The
difference may be expressed as a positive treateffatt, a negative treatment effect, or simply
that the treatment mean is not equal to the comean. After the hypotheses are clearly stated
and the data have been collected and analyzedgskarcher must decide if there is sufficient
evidence to reject the null hypothesis.

The significance level, often denoted is the probability of rejecting the null hypoties
when it is true. This is known as a Type | erraer@ Type | error occurs when the researcher
finds a significant difference between two groupat tdo not, in fact, differ. Suppose, however,
that the null hypothesis is indeed false. A Typertbr arises when we mistakenly retain the null

hypothesis. The probability of retaining a falsé hypothesis, often denoteg], is therefore the

Type Il error rate. In this case, the researcherlowks a significant difference. The two types of

errors are illustrated in Table 1.1.



Table 1.1

Possible errors in hypothesis testing

Do Not Reject the Null

Reject the Null

Hypothesis Hypothesis
Null Hypothesis is True No Error Type | Error
(Probability = 1.Q¥) (Probability =Q¥)
Null Hypothesis is False Type Il Error No Error

(Probability = 3)

(Probability = 1-03)

If the null hypothesis is true (first row of Tallel), the correct decision is to retain the

null and the probability of this correct decisiofProbability (RetainH, | H, is true) = 1.

With a = 005, for example, the probability is 0.95 that we wilake the correct decision of
retaining H, when it is true. The incorrect decision in thise#s the Type | error — rejecting the
true H,. WhenH,is true, this error will occur with probability = 005.

On the other hand, if the null hypothesis is fgtsond row of Table 1.1) the correct

decision is to reject it. If the probability of mag this correct decision is defined as power =
Probability (RejectH, | H, is false)=1- B . The incorrect decision, known as the Type Il erro
occurs with probabilitys , that is Prob(Type Il erroH, false)=3 .

Looking at the results of a study retrospectivelg,know that a researcher who has
retainedH, (column 1 of Table 1.1) has either made a coxtectsion or committed a Type |l
error. In contrast, a researcher who has rejeetgqcolumn 2) has either made a correct

decision or committed a Type | error. Note thas ibgically impossible for a researcher who has

rejectedH, to have made a Type Il error. To criticize suclksearcher for designing a study

with low power in this case would be a vacuousaisitn, because a lack of power cannot

account for a decision to rejekt,. However, a researcher who retains the null hygsmshmay

have committed a Type Il error and is thereforeepbally vulnerable to the criticism that the

study lacked power. Indeed, low power studies irctvitd , is retained are virtually impossible

to interpret. One cannot claim a new treatmengtmbffective in a study having low power



because, by definition, such a low power study @dwave little chance of detecting a true
difference between two populations representetarstudy.

Although Type | and Type Il errors are mutually kestve, the choice ofr can affect
power. Suppose a researcher, worried about comtiType | error, sets a lower, say
a =0.001. If the null hypothesis is true, this researchérindeed be protected against a Type |

error. However, supposk, is false. Settingr very low will reduce power, equivalent to
increasing3 , the probability of a Type Il error. While keepimgmind that the choice af

affects power, we will for simplicity assunge= 005 in the remainder of this discussion in
order to focus on sample size as a key determofgmwer.

Of course, neither type of error is desirable aedveuld prefer to make the correct
decision. As a result, we want the probabilitcofrectly detecting a difference, that is, the
power, to be large. For example, if the power 80we will correctly identify a difference
between the groups with probability 0.80. Poweatgethan or equal to 0.80 is often recognized
by the research community to be sufficient, thosgime researchers seek 0.90 as a minimum.

The ability to correctly detect a difference ofiaen magnitude in the mean outcome for
the two groups is characterized by the power ofthdy. If a study is underpowered, a
practically significant true difference might godetected. The importance of designing a study
with adequate power cannot be overstated, espgetiaih the cost perspective. Imagine a multi-
million dollar intervention study that fails to @et an effect simply because the study did not
have sufficient power. In other words, the inteti@mmay or may not produce practically
significant effects, but the researchers are niat ttbmake this determination due to inadequate
power. One might argue that the money investetertrial was not well spent since at the end
of the study, it is still unclear whether or not ihtervention was effective.

1.1 Approaches for conducting a power analysis

In the recent literature on statistical power, @pproaches for conducting power
analyses have emerged. The first approach, whictel¢he “power determination approach,”
begins with an assumption about the effect sizenteevention produces, and the aim is to
compute the power they will have to detect thaeafivith a given sample size. For example,
suppose that a team of researchers is planninglg & detect the effect of a school-level
intervention aimed at improving math achievementliod graders. They plan to randomize
schools to receive either the treatment or contimtie current protocol. Pilot studies and
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available theory suggest that a practically sigatiit effect would entail a standardized effect
size of 0.20; that is, a mean difference equivaet20 in units of the population standard
deviation of the outcome. Thus the researchers togoliin the study to be able to detect an
effect of at least 0.20 standard deviation uniighls case, the effect size is already determined,
and the researchers are interested in calculdtengample size necessary to achieve power of
0.80. Of course, this process can be repeatedrimige of effect sizes.

The second approach, which we call the “effeat sigproach,” begins with a desired
level of power and the aim is to compute the minmeffect size that can be detected at that
level of power for any given sample size. This apph can, of course, be replicated at any
given level of power. Bloom (1995) defines the MD&sSthe smallest true effect that can be
detected for a specified level of power and sigatfice level for any given sample size. For
example, suppose that another team of researchsiisdying a whole school reform model.
They plan to randomize schools to either the ndarme model or current conditions. Because of
financial considerations, the team can only re@Qischools and 100 students within each
school. The sample size is set, thus the researanertrying to determine the smallest effect size
they can detect with the pre-specified sample size.

The power determination approach and the effeet@pproach represent two different
ways to conduct a power analysis. However, bothagghes yield the same conclusions. That
is, a power analysis could be conducted using egphproach and the ultimately the same
conclusions would be reached. Also, both approaalsesrequire assumptions about the
variation in the outcome. The Optimal Design sofenvallows the researcher to use either

approach for conducting the power analysis.



2.0Design options

Identifying the appropriate research design fetualy is critical because a power analysis
is specific to a particular design. That is, thguieed parameters differ depending on whether,
for example, individuals are the unit of randomi@ator clusters are the unit of randomization,
or blocking is or is not present. This section siaripes the various design options present in
Optimal Design Version 2.0. The models and notatimmespond to the HLM notation
(Raudenbush and Bryk, 2002). Specific details ahout to calculate the power for the various
designs is found in sections 2 through 5.

Table 2.1 includes all of the design options wtienprimary outcome is measured at the
individual level. The designs are divided into tgroups, those that randomly assign individuals,
hereafter referred to as person randomized taald,those than randomly assign clusters, or
intact groups of individuals, hereafter referreésocluster randomized trials (CRT). The first
row of the table identifies the number of levelshe study. For example, a single level trial
simply has one level, whereas a multi-site tria ba conceived as a two level trial, with
individual in sites or blocks. We can look at ro2v&rough 4 together to understand the
relationship between the level of randomizatioe, tiamber of levels, and the presence of
blocking. For the single level trial and the simpésted designs that do not include blocking, we
can see that the level of randomization is the sasrtee top level in the study. For example, in a
three level cluster randomized trial (3-level CRfRigre are three levels and the top level, or
level three, is the unit of randomization. In thediked designs, the level of randomization is
immediately below the blocks, with the blocks being top level. For example, in a multi-site
cluster randomized trial (MSCRT), there are theaels, possibly students in classrooms in
schools and schools are blocks. Randomization saeithin the blocks, hence at level 2, or one
level below the blocks. This is true for all thesidms that include blocking in Table 2.1.

The next row indicates whether or not there isapigon to include a covariate in the
analysis in the software. In the cases where ar@eds available, the covariate is always at the
level of randomization. Including a covariate isanmon way to increase the precision of the
study and thus reduce the required sample size&hwdain often help reduce the cost of the study.

The use of a covariate requires that the folloveiegumptions are met: 1) the covariate has a



strong linear association with the outcome, anth@)association is similar within each treatment
condition.

The row labeled “outcome” identifies the outcomeet that the Optimal Design accepts.
For the single level trials, continuous outcomesthe only available option. Power analysis for
binary outcomes is available for three of the CRTlse final row provides an example of the
nested structure of the data for each design.
Table 2.1
Design Options for Individual Level Outcome Measure

Person Randomized Trials Group Randomized Trials

Three-level Four-Level Cluster
Two-Level Three-level Multi-site  Multi-site Randomize
Repeated  Cluster Cluster Cluster Cluster  Trial with

Singlelevel Multi-site (or Measures Randomized Randomize(Randomize(Randomizet Repeated

Trial blocked) Tial  Trial Trial Trial Trial® Trial Measures

Number of

Levels 1 2 2 2 3 3 4 3

Level of

o 1 1 2 2 3 2 3 3
Randomization

Blocking? No Yes No No No Yes Yes No
Covariate? Yes Yes No Yes Yed Yed Yes No

Continuous Continuous Continuous

Outcome type Continuous Continuous Continuous _ _ Continuous Continuous
Binary Binary Binary
Students,
Students, Repeated
Repeated Students, Classroom,
Students, Students, Classrooms measures f¢
Example Students measures Classrooms Schools,
Schools Schools Schools o students,
for students Schools Districts
(blocks) schools
(blocks)

& Option available for the continuous case only.

The second set of design options available irstiievare includes designs in which the
primary interest is in a group-level measure irgtefaan individual level measure. For example,

a measure of classroom quality might be the prinoatgome. We shall assume, however, that



the group-level outcome is measured imperfectlyt ith with reliability less than 1.0. In this
case measurement error variance “adds a levelig@amnalysis (see Raudenbush and Bryk
(2000), Chapter 11. Table 2.2 presents these aptidmese designs look similar to those in
Table 2.1 as far as the first four rows of thed¢aBlhe main difference is that the outcome of
interest is measured at the group level rather thamdividual. This is evident by the absence
of the individual in the examples of nesting in réwf Table 2.2.

Table 2.2

Design Options for Group Level Outcome Measures

2-level cluster 3-level cluster randomized Multi-site cluster
randomized trial trial randomized trial
Number of
Levels 2 3 3
Level of
Randomization 2 3 2
Blocking? No No Yes
Covariate? No Yes No
Outcome type Continuous Continuous Continuous
Classrooms Classrooms
Classrooms Schools Schools
Example Schools Districts Districts

Tables 2.1 and 2.2 identify the designs availablbe OD software. One major design
difference that emerges across the tables is wheth®ot a trial includes blocking. Although we
leave the specific details of each design to Sestibthrough 5, we discuss the rationale for
blocking since it applies across all the blockesigies identified in Tables 2.1 and 2.2.

2.1 Blocking

Blocking is a commonly used in experimental desggimprove the face validity and/or
to improve the precision and power of the experitalestudy. For person randomized trials, the
basic idea of pre-randomization blocking is to fgiks or blocks where individuals within the
sites are very similar with respect to the outcaaeable. One then randomly assigns persons to
treatments within each block. Variation betweerckéodoes not affect the standard error of the
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treatment effect estimate; if such variation igérblocking will increase statistical power. The
same idea extends to cluster randomized trials; tifwe aim is to find blocks where clusters are
similar with respect to the outcome variable. Theduces the heterogeneity within blocks,
increasing the precision of the treatment effettrete, hence increasing the power of the test
for the main effect of treatment. Researchers atgard the blocks as “sites,” so that a cluster
randomized trial with blocking is often defineda$multi-site cluster randomized trial,” and we
shall use that language as well.

To illustrate in the case of a cluster randomized, imagine that researchers develop a
new reading program for elementary school stud&kesknow that the percent of students with
free/reduced lunch is related to school mean regathievement. We might therefore assign the
school to “blocks” that are similar percent witedrand reduced lunch. Within each block, we
randomize schools to receive the new reading prognathe regular program. This reduces the
variance in the estimate of the treatment effecabse by dividing schools into blocks we are
able to remove the between-block variance fromether variance. If the between-block
component is large, removing it greatly increabesarecision of the estimate. Another example
arises because schools are naturally grouped wattiool districts. The districts are then blocks
or sites, and the randomization occurs within aitsr

We define designs that block before randomizingaki-site randomized trials. In
essence, they are single level trials or clustedeanized trials that are being replicated within
each site. Replication across sites allows usttmate an effect size for each site. Thus we are
able to estimate the variability of the treatmefea across sites.

In many cases, the sites will be regarded as rahydsampled from a larger universe or
“population” of possible sites. The larger univeiséhe target of generalization. For example, if
schools are sampled and then classrooms are agsigremdom to treatments within schools,
the target of any generalizations will often be ldrger universe of schools from which schools
in the study are regarded as a representative sampl

In other cases, the sites will be regarded aslfig@nsider a program designed to teach
students about the dangers of drugs. The outcontbdastudy is students’ attitude towards
drugs, which is measured by a questionnaire. Téearehers hypothesize that the school setting
- suburban, urban, or rural - affects student&uake towards drugs. Thus they want to block on

the setting. In this case, suburban, urban, arad ane not regarded as sampled from a population

11



of settings, but rather as fixed blocks or sitefietkier we view sites as fixed or random affects

the data analysis and planning for adequate paweetect the treatment effect.

12



3.0Layout of the Optimal Design Software

This chapter describes the setup of the softwgeetion 3.1 describes how to navigate
through the mainscreen of OD. Section 3.2 descthe$ayout of each module. A concluding
section highlights the underlying assumptions agbftware.

3.1 Navigating the main screen

The blank screen in the Optimal Design is dispdayeFigure 3.1.
-1aix

Fle Desgn Hep

Figure 3.1 Initial blank screen.
Clicking on the file option reveals the preferenagd the exit options. The preferences allow the
user to select black and white or color for thepgsaon the screen and any saved graphs. Also,

the user can select to integer or continuous valngse horizontal axisFigure 3.2 displays the

preferences screen.

x

Screen graphs—————— [~ Saved araphs
& Color " Color
" Black and ‘white & Black and white

¥ Print continuous harizontal asis

! Clicking along the trajectory is not an exact noetlfor obtaining the power for a study. It giveseay close
estimate. Selecting continuous values may helpslee find a more exact value. R code is availaptsurequest
for users interested in the exact power.

13



Figure 3.2 Preferences.
The help option provides the user with resourcesantact information for the Optimal
Design authors.
The main menu is found under the design headihgki@g on the design tab brings up
four options:
Design
Person randomized trial
Cluster randomized trial with person-level outesm
Cluster randomized trial with cluster-level outeces
Meta-analysis
We focus on the first three choices, however, thegy for a meta-analysis is discussed in
Appendix A. The first three choices, person randmaitrials, cluster randomized trials with
person-level outcomes, and cluster randomizedstwith cluster-level outcomes, correspond to
the main design options defined in Chapter 2. Witkach type, there are various design choices
as identified in Tables 2.1 and 2.2. The speciétais for each design option are included in
Sections 2 — 5. However, each module functionslartyiand section 3.2 describes the general
layout of each module.
3.2 General layout
The OD is setup to encourage the user to havairgefined the design prior to running
power calculations. That is, the user must navigateugh a series of design prompts prior to
reaching the screen which enables him to condpoinger analysis. The first thing the user must
determine is whether the trial is a person randethtrials, a cluster randomized trial with
individual outcomes, or a cluster randomized tidgh group-level outcomes. We discuss each
option separately.
Person Randomized Trials
Placing the mouse over the heading person ranaahtials reveals three options:
Person Randomized Trial
Single level trial
Multi-site (or blocked) trials

Repeated measures

14



The design choices correspond to those in Tablar®&lthe user must select the appropriate
design at this stage. After selecting a designitaan menu for the design will appear. The menu
for each design varies slightly depending on thegieand is described in detail in the individual
design chapters.
Cluster Randomized Trials with person-level outcome
Placing the mouse over the heading cluster rarmkhtrials with person-level outcomes
reveals two options:
Cluster Randomized Trials with person-level outesm
Cluster randomized trials
Multi-site (or blocked) cluster randomized trials
After clicking on either a cluster randomized twalblocked trial, the user is asked to specify the
level of treatment. After selecting the level adatment, the main menu for the design appears.
Cluster Randomized Trials with group-level outcomes
Placing the mouse over the heading cluster rarckahtrials with group-level outcomes
reveals two options:
Cluster Randomized Trials with group-level outceme
Cluster randomized trials
Multi-site (or blocked) cluster randomized trials
Similar to the CRT for person-level outcomes, therus prompted to decide either a cluster
randomized trial or a blocked trial. Selecting ba tluster randomized trial forces the user to
select either treatment at level 2 or 3 in ordegriter the main menu for a design. There is only
one option for the blocked trial, treatment at I;eand once selected, the user enters the main
menu.
3.3 The main menu for a design
After navigating through the prompts to the appiaip design and selecting a display
option (such as power vs. total number of peopte) main menu for each design is very similar.
Figure 3.3 displays the main menu for a personoamzkd trial-> Single level triak> Power
on y-axis=> Power vs. total number of people.

15
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Fle Design Working Help
LT
o8 |refsissd o] ve|om| 3 oe| ]

Figure 3.3. Main menu for a person randomized trial.

The buttons that appear at the top of the scregnfeaeach design depending on the parameters

that are required for a power analysis. However gigneral layout is the same. The title appears

at the top, in this case, Power vs. total numbgreaiple N). This indicates that the power will

be on the y-axis and the total number of peopléwaily along the x-axis. Below is an

explanation of the buttons that appear below the ti

a is the significance level, or Type | error ratg. default, it is set to 0.05. It can be
changed by clicking on it and changing the value.

8, R are the design parameters required for conduetipgwer analysis. For other
designs, other parameters may be required. Tthasé parameters, the user
simply clicks on the button and sets the value. Aimaber of options for each

parameter varies from 1 to 3.

<X< controls the minimum and maximum values on th&ig-arhe minimum and
maximum values can be changed by clicking thisdoutt

<Y< controls the minimum and maximum values on theaig-8y default, the y-axis
is set from 0.0 to 1.0 but can be changed by cigkin the button
Graph symbol plots the default settings.

Leg allows the user to change the title of the is-¢egend, y-axis legend, and to add a

title to the graph.
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Save allows the user to save the graph. Graprsaassl as .emf files and can be
inserted into a word document using the inserupectommand.
Print symbol prints the graph on the screen.
Defs plots the default settings.
X closes the graph and returns the user to tlggnatiscreen.
Clicking on any button automatically yields a powarve. Figure 3.4 is the default

power curve for the single level trial.

T
Fle Design Working Help

L
o8 |relsiesd o] ve|om| 3 oe| ]

a=0.050
=020

—ozo0m
1

43 a2 121 160 199

Total number of subjects

Figure 3.4 Default settings for single level trial.
The key appears in the upper right corner of theestand lets the user know the specified
parameters. The parameters are changed by clickirtige buttons. Clicking along the trajectory
also allows the reader to determine the power f&pegific sample size.
3.4 Assumptions

There are several assumptions underlying OD.,Mistassume that all designs are
balanced. For example, in a single level trial vi€hpeople, we assume that 30 people are in the
treatment group and 30 are in the control grougome cases, the design is purposely
imbalanced or differences in cluster sizes are oigable. We recommend using the harmonic
mean for these cases.

A second assumption is that there are two comtititn all cases, the power is calculated
for the difference between two groups, treatmedt@mtrol. For multiple groups, we

recommend using the software to determine the p&avegrairwise comparisons.
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A third assumption is that the parameters ententedthe software are reasonable. The
OD accepts all parameter values and does not testher or not a parameter value is realistic.
Pilot data and literature reviews are the most @gppate methods for obtaining reasonable
parameters to use for a power analysis. The defalues are simply default values and do not

apply to any particular study.
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Section II: Optimal Design for person randomized tials

Optimal Design for person randomized trials inelsitrials where individuals are
randomly assigned to the treatment or control deyrdi There are three types of designs in this
category. Briefly, single level trials are trialgth no blocking or clustering. That is, individsal
are randomly assigned to either the treatmenteoctimtrol group. Multi-site (or blocked) trials
are studies where individuals are randomly assignéde treatment or control within blocks.
That is, the randomization process is repeatedsadyocks or sites. The blocks may either be
intact entities such as classrooms or they mayditehmad pairs, where individuals are put into
pairs (or blocks) because they are similar witipeesto a variable that is related to the outcome.
The third option, repeated measures, are studiediich individuals are randomly assigned to
the treatment or control and then the individuaésraeasured repeatedly over time. We describe

the conceptual details and provide a “how to” gudateeach design in the following 3 chapters.
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4.0 Single level trials

Single level trials rely on the assignment of wndiials to a treatment condition. In a
single level design, we simply randomize individuia a treatment condition or control
condition. The use of random assignment assuréshthdreatment groups are comparable. First,
we examine the statistical models to see what isfibe power to detect the treatment effect.

4.1 The model
We can represent data from a single level trighwisimple one level model. The model

can be expressed as:
Yi =6y + BW, +, r ~N@©0") [4.1]
for

i=1,...,N persons in the study

where

Y. is the response for person
B,is the mean response
B, is the treatment effect

W is the treatment indicator with %2 for treatmend avt for control

r. is the random error associated with each person

|
o?is the between persons variation.
4.2 Testing the treatment effect
We are primarily interested in the main effectrebtment,, or in a balanced design,

the simple difference between the treatment antralosverages. It is estimated by:

Bi=Ye—-Yc [4.2]

where
Ye is the mean for the experimental group

Yc is the mean for the control group.

AssumingN/2 persons per cluster, the variance of the estintagéatinent effect is:

20



2

var(B,) = 4§

Note that the variance of the treatment effectfisnation of the total sample sizd, and the

[4.3]

between-persons variance?

We can use the results of a one way analysis deveg with a fixed effect for the
treatment. The test statistic is Rrstatistic, which compares treatment variance ttor efariance.

TheF statistic is defined as:

Fstatistic = % : [4.4]

error )

As N increases without bound, tRestatistic converges to the ratio of expected nsepares,

defined as:
2 2 2
E(MSreatmem) - g°+ Nﬁl /4 :l+ ngl [45]
E(MS,,.) o’ 40?
and can be rewritten as:
2 2
E(Mareatmem) =1+/1 Whereﬂ - Nﬂlz - ﬂl [46]

E(Mserror) 40— Var(ﬁl)

If the null hypothesis is true, thestatistic follows a centrdt distribution with 1 degree
of freedom for the numerator ahd2 degrees of freedom for the denominator. Undecténtral
F distribution, we would expect thestatistic to be approximately 1. In other wordere is no

variation between treatments g = 0and the term wittNA3? in the numerator of the expected

mean square ratio is null. We see that i O the ratio of expected mean squares converges in

2
large samples teE(MS*M = 0—2 =1+A=1

EMS,ser) @
If the null hypothesis is false so that there iseatment difference, that |8, # 0, theF
statistic follows a non-centr& distribution with 1 degree of freedom for the nuater and\-2
degrees of freedom for the denominator and nonra@gtparameter. Then the ratio of expected
mean squares becomes the non-ceftdistribution, characterized by a non-centrality
parameter, A , defined in Equation 4.6. Note thatcan also be expressed as the ratio of the

squared treatment effect to the variance of thenagt of the treatment effect.
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The non-centrality parameter is strongly relatethtopower of the test. Adincreases,
the power increases. Looking at Equation 4.6, weseg that the non-centrality parameter is a

function ofN, o, and ;. As ¢* the variation between-persons, decreases, theemtnality

parameter will increase. As the desired effect gizencreases, the non-centrality parameter

increases. However, the problem with these twompatars is that they typically are not under
the control of the researcher. The effect sizelmtdieen-person variability are usually a
function of the phenomenon under considerationa Assult, the most effective way for the
researcher to increase the power of the test tctltte treatment effect of a given magnitude is
to increase the total sample sike As N increases, the non-centrality parameter increases a
well.
4.3 Standardized notation

Thus far we have focused on the unstandardizeationt However, it will be easier to
think in terms of standardized units. A standardie#fect size 0, is the difference in the
population means of the two groups divided by thedard deviation of the outcome. The
standardized effect in a single level trial carekpressed as:

B
0=
}0.2

[4.7]

where

B = He — He

U is the population mean for the experimental group

MU is the population mean for the control group.
In the standardized model, we get =1 . Dividing the numerator and denominator of the-non
centrality parameter by ?. we see that we can represent the non-centralignpeter in
standardized notation simply as:

N,B’f/a2 No?
A= 5 = )
4g° /o0 4

This allows us to calculate the power as a funatibonly two parameters, the total sample size

[4.8]

and the standardized effect size.
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4.4 The model with a covariate
Choice of an effective pre-treatment predictorknas a “covariate” will reduce the

between-person variation, hence increasing thagioacof the estimate of the treatment effect.

The correlation between the covariate and the owcs denotedp,, . The proportion of
variance explained by the covariate is denqmép

Equation 4.9 is the model with a covariate.

Y =B+ BW + B, X, +r, r ~N(@©0y) [4.9]
where

Y. is the response for person

B,is the mean response

B, is the treatment effect
W is the treatment indicator with ¥z for treatmend avt for control
B, is the regression coefficient for the covariate

X, is the value of the covariate, centered aroungrdad mean

r. is the random error associated with each persomditional on the covariate

Jliis the between person variation conditional onctvariate, and can therefore be

regarded as the “conditional variance,” wherg = (1- pz)o?.

Note that the model now looks like the familiaabsis of covariance model. The
variance is conditional on the covariate. The sendlie conditional variance relative to the
unconditional variance, the greater the increagkarprecision of the treatment effect.

4.6 Testing the treatment effect (including a covaate)

The estimate of the treatment effect is:

ﬁlz?E_?C_BZ(XE_)_(C). [4.10]
The estimate of the treatment effect is adjustede difference in the two groups on the mean
value of the covariate. THestatistic still follows a non-centr&l distribution,F(1, N-3, A,) .

However, notice that the denominator degrees efiiven is one less than the case without the

covariate. The new non-centrality parameter is:
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/] - Nﬁlz - Nﬁlz )
Y 4oy A0t(l-py)

[4.11]

Note that the smaller the conditional variance léinger the non-centrality parameter, and
greater the power of the test for large samplessize

In standardized notation, the non-centrality pat@mis written as:

2

y :Na* _ No?
4 41-p2)

[4.12]

where

s=P - A
Joi  Jota-p2)

calculate the power of the test as a function efgioportion of explained variation in the

the conditional effect size. Using Equation 4 \i#&,can

outcome by the covariate, the standardardizedtesfee, and the total sample size.
4.8 Using the Optimal Design for single level tria

The single level trial module allows the researdcbeapproach the power calculations
using either the power determination approach eeffect size approach. The module menu is
below:
Power on y-axis

Power vs. total number of people (N)

Power vs. effect size)

Power vs. explained variation by covariaté)(R
MDES on y-axis

MDES vs. total number of people (N)

MDES vs. powerR)

MDES vs. explained variation by covariat€YR

The first three options present the power on tlagig-and the sample size, effect size, and
explained variance on the x-axis, respectively. 3éwond three options present the effect size on
the y-axis and the sample size, power, and explaragance on the x-axis. We present an
example below and go through the steps involvaembimducting a power analysis for the

example varying the known and unknown parameters.
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4.9 Example

A team of researchers is planning to do an experineedetermine attending a charter
school compared to the local public school impraaesdemic achievement. Assume that more
students apply for admission to the charter sctiw@oi they can admit. Because of the large
number of applicants, all students enter a lotéery half of the students are randomly chosen to
receive the treatment, enrollment at the charteosic and half of the students will receive the
control condition, enrollment at the local publahsol. The researchers hypothesize that
students enrolled in the charter school will haresater achievement than the students at the
regular public schools. They plan to measure aem@nt using the lowa Test of Basic Skills
(ITBS). Section 4.10 presents a scenario in whiehpower determination approach for
conducting a power anlaysis is most applicabléit gtudy and provides the details of how to
do the power analysis using OD. Section 4.11 ptesescenario in which the effect size
approach for conducting a power anlaysis is mogliegble to this study and provides the
details of how to do the power analysis using OD.

4.10 Power determination approach for conducting @ower analysis

Based on pilot study results, the researchersoexpat students in the treatment group
will score 0.25 standard deviation units greatantktudents in the control group on the ITBS.
The researchers want to be able to detect thigr@asment effect with power = 0.80. How many
students are required for the study? Suppose siearehers decide to administer a pre-test to all
students prior to the study. Based on past liteeathey expect the pre-test to explain 64% of the
variation in the post-test scores. How many stuslard required after including the pre-test in
the design and analysis plan?

In this scenario, the total number of individuiglsinknown and the effect size for
planning is set at 0.25. Thus the most appropdlatéce for the power analysis is to allow the
sample size to vary on the x-axis and the powegatg on the y-axis. The steps follow.

Step 1: Select Person randomized trialsingle level trials> Power on y-axis> power vs.

total number of peopleN). The blank screen is in Figure 4.1.
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|8 |p2ncsus| | weom| @ |one| X

Figure 4.1. Main menu for a cluster randomized trial.
Note that the two parameters on the toolbar tretequired for calculating the power include
the effect size, and“Rthe percent of variation explained by the covar{i there is a covariate).

Step 2 Click ond. Set delta(1) = 0.25. The power curve appearsgarg 4.2.

» Optimal Design =18l x|
Fle Design Working Help
. Single Level Trial - Power vs. N =18l x|

|5 |relonfsd - ]vel | 8| x|

—ozo0m
1

43 82 121 160 199

Total number of subjects

Figure 4.2 Power curve.
Step 3: Looking at the graph, we can see that wd teeextend the x-axis in order to determine
how many individuals are required to achieve pow8r80. Click on <x< and set the maximum

= 600. Figure 4.3 displays the screen.
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Figure 4.3.Power vs. total number of subjects.

Note that the key in the upper right corner shdvesd=0.25 that we specified. Clicking along
the trajectory reveals that 504 people are requoatetect an effect size of 0.25 with power =
0.80. This means 252 individuals would be randothipeboth treatment and control.

Note that Figure 4.3 does not use the informatiotmé covariate. Let’s include the covariate and
see what happens to the required sample size.

Step 4: Click on R Set r2(2) = 0.64. Figure 4.4 displays the resuilt.

ptimal Design =l8lx]|

Fle Desgn hep

lojx]

Figure 4.4.Power vs. total number of subjects with covariate.

The key indicates that the dotted trajectory regmesthe plot for the design with the pre-test.
Clicking along the trajectory, we can see thatrtdpiired sample size for power = 0.80 drops to
180, or 90 in each condition. Including the coviaigeduces the total sample size by 324

persons. This reduction may be critical for redgdime cost of the experiment.
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In this scenario, we allowed the sample size tg abong the x-axis. However, we could
also choose to allow the effect size to vary althegx-axis (Power vs. effect size) or the
explained variation by a covariate (Power vs. expld variation by a covariate) to vary along
the x-axis and still maintaining the power on thaxys.

4.11 Effect size approach for conducting a power afysis

Suppose that the researchers have counted uptéh@amber of people that entered the
lottery and discover that there are 200 peoplewlaait to participate. All 200 people will enter
the lottery, thus 100 people will be assigned ttkatment and 100 people will be assigned to
the control. What is the minimum detectable eflezé (MDES) the researchers can find with
power = 0.80? Suppose the researchers decide toiatbna pre-test to all kids prior to the
study. Based on past literature, they expect thdgst to explain 64% of the variation in the
post-test scores. What is the MDES with power £9.8

In Scenario 2, the MDES is unknown and the total®a size is limited to 200. Thus the
most logical approach for conducting the power gsislis to allow the MDES to vary on the y-
axis. One option then is to select the following:

Step 1: Select Person randomized trialsingle level trials> MDES on y-axis> MDES vs.

number of peopleN). The blank screen appears in Figure 4.5.

i
Fle Design Working Help

RI-IET
[P [mefeifss] ke ]velm| @ o]

Figure 4.5 Main menu for person randomized trial.
The toolbar is identical to the toolbar in Figdr& except for the required design

parameters. Because the MDES is on the y-axishendample size is on the x-axis, the program
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requires that the user specify power afdtRe percent of variation explained by the covaria
To determine the MDES for power of 0.80, follow gteps below:

Step 1: Click orP. SetP(1) = 0.80.

Step 2: Click on R Set r2(2) = 0.64. Figure 4.6 displays the results

—ioix
Fle Design Working Help
151

[P |relofsd - e]uel | @[] x|

a = 0.050

F-0.80
— —Fe0a0Ri =08
E}

T R e |
5
L

43 g2 121 160 199

Total number of subjects

Figure 4.6 MDES vs. power.
Clicking along the solid trajectory reveals a MD&3.40 for 200 people whereas clicking
along the dotted trajectory reveals a MDES of 0d2£200 people, both under the constraint of
power = 0.80.

In this scenario, we allowed the total of peopledry on the x-axis. Additionally, the
power (MDES vs. power) or explained variation byozariate (MDES vs. explained variation

by a covariate) could vary along the x-axis with Ef®on the y-axis.
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5.0 Multi-site (Blocked) trials

We define a multisite or blocked trial as a twedlkedesign with students within blocks.
For example, classrooms may represent a block @&hthveach classroom, students are
randomly assigned to receive a novel treatmentcivisider power for the treatment effect, first
assuming random site effects after which we comdiged site effects.
5.1 The model (Assuming random site effects)

The model for a multi-site trial can be thoughtsfa two level hierarchical linear model.

The level-1, or individual level model is:

Yi =B + By X +g [5.1]
for

i =1...n persons per site

j=1...,Jsites
where

Y;

; is the response for persoat sitej

B,; is the mean response at gite
B,; is the treatment effect at sjte

X, s the treatment indicator with %2 for treatmend &% for control

r, is the random error associated with persansite;
o’is the between persons variation.
The level-2, or site level model is:
Boi = Voo T Uy Uy,; ~ N(O,7,)
0j 00 0j 0j 00 [52]
,811' = Vo T Uy Uy, ~ N(@©,7,,)
where

VoolS the grand mean
V101S the main effect of treatment

up; Is the random error associated with the mean
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u,; is the random error associated with the treatmiéectte
T, iS the variability between site means

r,, Is the variability between sites on the treatnedfect

The inclusion of the random error termig, and uy; , is what defines this as a random effects

model. Our primary interest is the main effectrebtment,y,,, and the variability of the

treatment effect across sites,.

5.2 Testing the treatment effect

In a balanced design, the main effect of treatiiseastimated by:

Vie=Ye—Yc [5.3]

where
Ye is the mean for the experimental group

Yc is the mean for the control group.

The variance of the estimated treatment effe®&idenbush & Liu, 2000):
r,+40’/n
-

Note that the variance of the estimated treatmiéettds a function of the number of blocks,

var(y,,) = [5.4]

the number of persons per blockthe between-persons variatiar?,, and the variability
between sites on the treatment effe¢t,

If the data are balanced, we can use the redudils analysis of variance with random
effects for the sites and fixed effects for thatneent. Thd- statistic for testing the main effect
of treatment follows a non-centrialdistribution,F(1, J-1,4). Recall that the non-centrality
parameter], is the ratio of the squared treatment effecheowvariance of the treatment effect
estimate. The non-centrality parameter can beewritis:

A — Jylzo

= 55
r,,+40°In =

Recall the larger the non-centrality parameter giteater the power. It is clear that increasing the
number of sites as well as the number of personsifgeincreases. However, looking at

Equation 5.5 we can see tlddas more influential for increasingthan isn. In addition, studies
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attempting to detect larger effect sizes have grgaawer. Finally, as the treatment effect
variability gets larger] becomes exceedingly important. In cases with mehg large effect
size variability and small treatment effects, iingortant to recognize that the treatment effect
may not be very meaningful. For example, a larfecetize variability may mean that in some
sites, the treatment is producing a harmful, oratigg effect. The average effect may be positive
but it may be hiding the fact that the treatmentksosery well in some sites and is harmful in
other sites. Hence it is important to report boih éstimate of the treatment effect and the
variability in the treatment effect in the resuwfsa multi-site trial.
5.3 Standardized notation

In order to give meaning to the size of an effeithout knowledge of the specific
outcome scale or measurement, we often standatdizeffect sizes. In a multi-site trial, we also
need to standardize the effect size variability. &@mple, an effect size variance of 0.10 is the
same as a standard deviation of approximatedyl0o =0.31. If a researcher desires a minimum
detectable effect of 0.20, a standard deviatiod.81 is large and would indicate a lot of
variability in the treatment effect across siteglded, if the treatment effects were normally
distributed, we would expect 95% of them to liehintabout two standard deviations of the
mean; more precisely, in the intervab+ 196* 031=(-051,0.71) , indicating that the effect
can range from very harmful to very positive.

Dividing the numerator and denominator of EquaBdhby o?, we can express the

non-centrality parameter as:

_ Jyzlo? _Jo? (5.6]
(t,+40%In)log® o5+4/n '
where
o=t g2-lu [5.7]

Jot' 7o
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are, respectively, the standardized effect sizetlamdtandardized effect size variability. Note
that 5.6 shows that the power in fact depends only, J J, and o’ 2
5.4 The model with a covariate

The covariate reduces the between-person varjdignce increasing the precision of the

estimate of the treatment effect. The proportiomasfance explained by the covariate is

denotedofy. Level-1 of the model includes the covariate:
Yij = ,501 +,311\Nij +:52jxij tE e ~ N (0,0%) [5.8]
Note:o?x = (L~ pf,)o* for

i =1...n persons per site
j=1..,Jsites
where

Y. is the response for persoat sitej

J

B,; is the adjusted mean response atjsite
B,; is the adjusted treatment effect at gite

V\/ij is the treatment indicator with ¥ for treatmend a¥& for control

X; lis the covariate

g; is the random error associated with persansite;

o’is the between persons variation conditional orcthariate.

The level-2, or site level model is:

Boj = Voo +Uy;

ﬂ-l _ y o -J qu -~ N(O, TOQX) [59]
5 _ oo U ~ N 7,,)

/82,' =V

The OD software is based on parameter estimatestprblocking as well as an estimate of the paroémariance explained by the blocking

0
variable. After the user enters the parametersptbgram calculates thgarameters defined in equation 7 as follogs:= ﬁ and
1-B

2
O
gs = “— whereu is the value prior to blocking and B is the petagfivariance explained by blocking.

1-B

33



where

YoolS the grand mean
V1ois the average treatment effect

V»01S the regression coefficient for the cluster-les@Variate, which is assumed constant
across sites

up; Is the random effect associated with the mean

u,; is the random effect associated with the treatratfatt

T,,is the residual variance between sites means

7,, is the variability between sites on the treatnedfect.

The inclusion of the random error termig, and uy; , is what defines this as a random effects

model. Our primary interest is the main effectrebtment,y,,, and the variability of the
treatment effectr,,.

5.5 Testing the treatment effect (including a covaate)
The estimate of the treatment effect is:

n

ym:\?E—\?c—fxm(XE—Xc). [5.10]

The estimate is adjusted for the difference intéhe groups on the mean value of the covariate.
The variance of the treatment effect estimate is:
1, +4o;In

var(y,,) = ]

[5.11]

where
o} is the conditional variance]l - 05)0”.
TheF statistic still follows a non-centr&l distribution,F(1, J-1, A,). The new non-centrality

parameter is:

2
A :Lmz [5.12]
r,, +4o,/n

Note that the smaller the conditional variance léinger the non-centrality parameter, and

greater the power of the test for large samplessize
In standardized notation, the noncentrality patamis written as:
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Jo™

X —

oy +4/n
where

o = Vio _ o , the conditional effect size and

Joio 1= p?
Ix Xy
\ o2

o5 =—°—.

1_10><y

5.6 Testing the variance of the treatment effect

For any design withl = 4, we can estimate and test the variance of théntesd effect
across sites. This is particularly important if theatment effect variability is non-negligible, in
which case the main effect of treatment may po@present the treatment effect in any specific
site. In this case, we need to have adequate povastect this variability.

The power to detect the variance of the treatrafatt is also based on &rtest. In
standardized notation, tirestatistic is (Raudenbush and Liu, 2000)
_ni,+40°

46%

TheF-statistic follows a centrdt distribution withJ-1, J(n-2)numerator and denominator

F [5.13]

degrees of freedom. The ratio of the expectaticim@humerator to the denominator is

nr,.+4c? noi+4 no?
w= 11 - %) :1+ %) .

5.14
4072 4 4 [514]

Under the null hypothesis of no effect size valighiwe expecto’to be 0, thuse =1. As the

ratio of expected mean squares increases, so lie@ewer to detect the effect size variability.
2
We can see from equation 9 thatasor n get Iarger,% also gets larger, which means the

power increases. This contradicts what we |learhedtancreasing the power of the test to
detect the main effect of treatment. For that iesteasing the number of sites yields greater
increases in power than the number of individualssites, and smaller variance in the treatment
effect across sites results in larger power. Thudigs cannot be planned to maximize the power
to detect the main effect of treatment and theavene of the treatment effect simultaneously.

Prior to planning a study, researchers must ddbiel@rimary goal of the study, detecting the
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main effect of treatment or the magnitude of tleatment by site variance, and plan the study
accordingly.
5.7 The fixed effects model

The fixed effects model assumes homogeneity ofrdament effect across sites. The

fixed effects model looks the same as the randdectsfmodel except that,; and u,; are

designated as fixed constants rather than randoiables. This difference is depicted in the

level-2 model:
,801' = Voo T Ug; [5.15]
,811' = Vo T Uy

where

YoolS the grand mean
V101S the main effect of treatment
up; J=1,...,J are fixed effects associated with each site mexah,are constrained to have

a mean of zero.

u; J=1,...,J are fixed effects associated with each site treatraffect, and are

constrained to have a mean of zero.

We are interested in the main effect of treatment, and the fixed treatment by site interaction
effects,u;, j=1,...,J.

5.8 Testing the treatment effect
We can use the results from an analysis of vagiavith fixed effects for the site and the
main effect of treatment as well as the fixed dfedgain, the test statistic is an F statistice Th
F test follows a noncentral F distribution JH( J(n-2);A). In standardized notation, the
noncentrality parameter is:
_Jno* _Jo°
4 4/n
Note that the treatment effect variability does agpear in the formula because we do not allow

[5.16]

the treatment effect to vary randomly across sites. models and non-centrality parameters are
easily extended to the case with a covariate dgvahg the logic presented in sections 5.4 and

5.5. However, we caution that the main effect eatment will be uninteresting or even
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misleading when effect size variability is lardeattis whenu,; j=1,...,Jvary substantially. In

that case, the main effect may poorly representrésment effect in any given site, and one
would want to estimate and tgst,...,J. The tests for these specific site-by-site treatme
effects (see Section 5.9) may be poor, particulabgn the sample size per site is small
5.9 Testing site-by-treatment variation in the corngxt of a fixed effects model

Operationally, the test of the treatment by s#agation for a fixed effects model is the
same as that for a random effects model. The pyiiffierence is in the null hypothesis. In the

random effects model, we test:
H,:02=0. [5.17]

However, in a fixed effects model, the treatmensibty effects are fixed constants so we test:

J
H():Z:ufj =0. [5.18]
i1

We use the sante statistic, F =Mwith J-1 numerator degrees of freedom akid-2)

ithincell

denominator degrees of freedom. If we reject tHehypothesis, a logical next step would be to
try to identify sites for which the treatment effessthe same (Kirk, 1982).
5.10 Using the Optimal Design for multisite (blocke) trials

The multisite (blocked) trial module allows theearcher to approach the power
calculations using either the power determinatigpraach or the effect size approach. The
module menu is below:
Power for treatment effect on y-axis

Power vs. site size (n)

Power vs. total number of sited (

Power vs. effect size)

Power vs. effect size variability
MDES on y-axis

MDES vs. site size (n)

MDES vs. total number of sited)(

MDES vs. effect size variability

MDES vs. powerR)

Power for effect size variability on y-axis
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Power vs. site size (n)

Power vs. total number of sited (

We present an example below and go through the steplved in conducting a power analysis
for the example varying the known and unknown patans.
5.11 Example

Suppose a team of researchers is planning to teswdutoring program for at risk®
grader students in a particular school districtrisk 2'¢ graders in the district will be randomly
assigned to either the treatment condition, a neloyt tutoring program, or the control
condition, the standard in class tutoring progrR@searchers plan to block on classroom. Thus
within each classroom the identified as-riSk graders will be assigned to the treatment or the
control condition. The researchers expect thatkahgcon classroom will explain 30% of the
variation in the outcome. The researchers plarséoaurandom effects model and assume the
effect size variability to be 0.01. Section 5.12g@nts a scenario in which the power
determination approach for conducting a power aislig most applicable to the study and
provides the details of how to do the power analysing OD. Section 5.13 presents a scenario
in which the effect size approach for conductingpaver analysis is most applicable to the study
and provides the details of how to do the powetyaigusing OD.

5.12 Power determination approach for conducting @ower analysis

Based on pilot study results, the researchersctxpat students in the treatment group
will score 0.25 standard deviation units greatanthtudents in the control group on the
outcome. The researchers want to be able to dbiscize treatment effect with power = 0.80.
They have 20 students per classroom. How manyrolaiss are required for the study? Suppose
the researchers decide to administer a pre-tedt students prior to the study. Based on past
literature, they expect the pre-test to explain 5%me variation in the post-test scores. How
many classrooms are required after including tieetgst in the design and analysis plan?

In this scenario, the total number of classrocsnsnknown and the effect size for
planning is set at 0.25. Thus the most appropdiatéce for the power analysis is to allow the
sample size to vary on the x-axis and the powegatg on the y-axis. The steps follow.

Step 1: Select Person randomized trialsnultisite (blocked) trials> Power on y-axis> power

vs. total number of sited) The blank screen is in Figure 5.1.
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Figure 5.1.Main menu for person randomized trials with blogkin
Step 2Click ond. Set delta(1) = 0.25.
Step 3: Click ong;. Seto;=0.01.

Step 4: Click on n. Set n(1) = 20.
Step 5: Click on B. Set B(1) = 0.30. The power euappears in Figure 5.2.

=1L A

Fle Desgn Working Help

. Multi-site trial(treatment) - Power vs. J =10]x]
a8 |otn|Blra|wdey  1z|re|w] @] x|

—oso0T

Figure 5.2 Power vs. total number of sites.

Note that the key in the upper right corner shdvesd=0.25 that we specified. Clicking along
the trajectory reveals that 21 sites or classrommsequired to detect an effect size of 0.25 with
power = 0.80. Note that Figure 5.2 does not acctaurthe covariate. Let’s include the covariate

and see what happens to the required sample size.

39



Step 6: Click on R Set r2(2) = 0.50. Figure 5.3 displays the resuilt.

M e
File Design Working Help

=181

ti-site trial(treatmen
|8 cin|Brafslss] ke |wamm| @ e X|

o =0.050
n= 20,6= 0.28,93= :.::=3=:.5:=R22=

~—®mE 0D
I

14 25 36 47 58

Total number of sites

Figure 5.3.Power vs. total number of subjects.

Clicking along the trajectory, we can see thatrétpiired sample size for power = 0.80 drops to
13 sites, assuming 20 individuals per sites. Téusiction may be critical for reducing the cost of
the experiment.

In this scenario, we assumed a random effects imétecould easily change it to a fixed
effects model by setting the effect size variapiid 0. However, it is critical to think about the
implications of choosing fixed or random site effefrom a practical perspective, and not a
purely statistical power perspective.

5.13 Effect size approach for conducting a power atysis

Suppose that the researchers are limited to 28rdams with 20 individuals per
classroom. They are still interested in an effexd sf 0.25. What is the minimum detectable
effect size (MDES) the researchers can find wittvgro= 0.80? Suppose the researchers decide
to administer a pre-test to all kids prior to thedy. Based on past literature, they expect the pre
test to explain 50% of the variation in the post-txores. What is the MDES with power =
0.80?

In Scenario 2, the MDES is unknown. Thus the magichl approach for conducting the
power analysis is to allow the MDES to vary on yh&xis. One option then is to select the

following:
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Step 1: Select Person randomized trialsnultisite (blocked) trials> MDES on y-axis>

MDES vs. number of clusterd)( The blank screen appears in Figure 5.4.

Figure 5.4 MDES vs. number of clusted)(

The toolbar is identical to the toolbar in Figbrd except for the required design
parameters. Because the MDES is on the y-axislengdwer is on the x-axis, the program
requires that the user specifythe total number of sites, n, the number of imlials per site,
o’the effect size variability, B, the percent of waate explained by blocking, and, fhe
percent of variation explained by the covariate détermine the MDES for power of 0.80,
follow the steps below:

Step 1:Click orP. StP(1) = 0.80.

Step 2: Click ono;. Seto? = 0.01.

Step 3: Click on n. Set n(1) = 20.

Step 4: Click on B. Set B(1) = 0.30. Figure 5.5thys the results.
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Figure 5.5.MDES vs. number of cluster3d)(
Clicking along the trajectory reveals a MDES of mp@mately 0.26 with) = 20. Next we can

add the covariate.

Step 5: Click on R Set B = 0.50. Figure 5.6 displays the results.
il

File Design Workng Help
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Figure 5.6.MDES vs. power with a covariate.
Clicking along the trajectory reveals an effezesof about 0.19. We assumed random

site effect but again could change this by settivegeffect size variability to O.
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6.0 Repeated measures trials

Similar to single level trials, repeated meastedst rely on the assignment of individuals
to treatments. However, in a trial with repeateasuges, individuals are typically assessed prior
to the treatment and then multiple times afterttbatment is implemented. By tracking
individuals over time, researchers are able tosase group effects on individual growth.

The general format of a repeated measure trid fellows: 1) randomly assign
individuals to treatment or control, 2) assessetiglin the treatment and control group prior to
implementation of the treatment, 3) implement teatiment for the treatment group, 4) assess
the students in both groups on the outcome ofesteb) repeat assessments of students in both
groups a pre-determined number of times over egjspkced time intervals. By collecting
repeated measures on individuals, we are able teehedividual growth trajectories. We can
model linear or curvilinear trajectories. A lindgeajectory, or first degree polynomial, is
characterized by an intercept and a linear rathahge, or slope. If non-linear growth is
expected, second, third, or higher degree polynismiay be added in order to model
curvilinear trajectories. A second degree polyndnailso known as a quadratic polynomial, adds
an acceleration parameter to the intercept andfatbange. A third degree polynomial, or a
cubic polynomial, is characterized by four paramsgtehange in acceleration, rate of
acceleration, linear rate of change, and an inperdedividual growth trajectories are plotted in
order to assess the average treatment effect pac#is polynomial change parameter.

The power for a design with repeated measure®rs gomplicated than for a single
level trial. To simplify the design calculationsewnpose the following constraints: orthogonal
designs, continuous outcomes, a linear link fumgtrandom effects covariance structure,
homogeneous covariance structure within each te@trand complete data. Fist we examine
the statistical models.

6.1 The model

We can represent the data from a single levéiviith repeated measures as a two-level

hierarchical model, with occasions nested withirspes. The general level one model for a

polynomial change parameter of orgds:

Yo =D MuCont ey, €y ~N(O0?%). [6.1]
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for
i wherei=1,... N persons
mwherem=1,...Mtime points
where
p indicates the polynomial order of change (ie.dim@uadratic, cubic)
Comis the orthogonal polynomial contrast coefficient

7T, is the level one coefficient of polynomial orger
e.;is the random error associated with the repeatexsures

o’is the level-1 variability, or measurement error.
The purpose of the polynomial contrast coefficieat® center the data, which makes the

interpretation easier. The formulas for calculatimg contrast coefficients are given below
(Raudenbush and Liu, 2001):

COm:]'
M
Cp =M=> m/M
m=1
e =2z -3 e M
2m 2 m ~ m [62]
L 4
|, %
CSm_g Clm_ M Clm
Cim
m=1

The general level two model is:

npi :IBpO +18plxi +upi upi - N(O’Tnp [63]

where

B, 1s the mean for the'porder polynomial change parameter
B, is the treatment effect for th& prder polynomial change parameter

X, is an indicator for the treatment or control groupfor treatment, -% for control

u, is the random effect associated with each person

T, is the between-person variance for tHeopder polynomial change parameter.
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To illustrate, let us consider & trder polynomial change parameter, or linear mobet level-

1 model is:
Yo =7 +71,,Cy, + € €, ~ N 0,0%) [6.4]
for

m =1,...,Moccasions
i=1, ..., Ipersons
where

7, is the mean response for person

7, is the average rate of change for perison

M
Cyy =M-— Zm/ M =m-mis the orthogonal linear contrast coefficient

m=1

e is the measurement error

o?is the within-person variability.
We can calculate the linear contrast coefficieatsahy M using equation 2. For example, if the
total number of data points is 5, thaMs5, the orthogonal contrast coefficients for atfirs
degree polynomial are:

Co = (LLLLY

¢, =(-2-1012). [6.5]
The level-2 model is:

TG = Boo + Lo X + Uy Uy ~N@©O7,,)

T = B+ B X +uy u, ~N@O,7,)

[6.6]
where

B,ois the mean response across persons

B,, is main effect of treatment for the means

B, is the average growth rate across persons

B, is the main effect of treatment for the growtresat

X, is an indicator for the treatment or control groupfor treatment, -% for control

U, is the random effect associated with the mean

45



u, is the random effect associated with the growtesra
T IS the between-person variance in means
r,, is the between-person variance in growth rates.

In this case, our primary interestds, the main effect of treatment for the growth ratesir,,

the variability in growth rates across persons.
6.2 Testing the treatment effect

The average treatment effect for linear changelialanced design is estimated by:

Sr Y

Iépl — i0E —ic [6.7]
nE nC
M
2 Cun Yo
where 7; :mle— is the person-specific ordinary least squaresnestir of the linear slope,
2. Cim
m=1

andng andnc are the sample sizes of the experimental and @aytoups.

To estimate the treatment effect, we average oseasions and persons. The variance of the

estimated treatment effect for th& polynomial order of change is (Raudenbush and2001):
0 A1 Vp)In

V =
ar(B p1) 3 (6.8]
where
v = o’ _o’f*(m-p-)
P J 2 Kp(M + p)l
2. Com
m=1 [6.9]
where

f is the frequency of observation
D is the duration of the study
M is the total number of occasions whiteDf+ 1

pis the polynomial order of change
K is a constant wheri, =1/12, K,=1/720, K,=1/100,800
o’is the measurement error.
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The termV denotes the conditional variance of the least spu@stimate of each person’s
change parameter. Note thiats a function of the frequency and the duratiothefstudy.

In the case of the linear change model, the veeiari the estimate of the treatment effect

is:
m]
Var('Bll) = w [6.10]
where
v = o _ o?f?(m-2)
e icf T (/1M +1)!
m=1 . [6.11]

The test statistic for the test that the treatnedferct for the 5 order polynomial equals
zero is arfF statistic. When the treatment effect is non-z#ve test statistic follows a non-
centralF distribution,F(1, N-2; A). As previously noted, the larger the non-centygdarameter,
the greater the power of the test. The non-cetyrafirameter can be expressed as the ratio of
the squared true treatment effect to the variaftieeoestimate of the treatment effect:

L Bn
Var(E o) U7 +Vp)

[6.12]
Beginning with the sample size, it is clear thar@asingn increased , hence increasing the
power of the test. The sample size is particulemiyortant if the between-person variance is

large. Looking at the variance components, we eartisat small values of,,, or between-

person variability, also increases the power. tivelly this makes sense. If there is less
variability between-persons, the estimate will barenprecise and the power of the test is

greater. We can also see that smaller valu&g ufill increase the power. Recall that

2 2¢£2p [
v="2 -9 f7(m=-p 1)'. Decreasing the measurement ewdr,decreasey . Also,
p M p
2 + p)
Com P
m=1

increasing the frequency of observations and tte tmmber of observations can decredse

particularly for higher order polynomials.

6.3 The standardized model
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Similar to the previous designs, we standardiezentibdel to facilitate a common
language among researchers. The standardized sifedor a particular polynomial of interest
is defined as:

_ Pm

T

PP [6.13]

%

where

B is the group difference on the polynomial of instre
7,,1S the population variance of the polynomial otietst.

Replacing equation 12 with the standardized paramtite new noncentrality parameter can be
expressed as:
2
_ no,a,
4

P [6.14]

where

a,is the reliability of the least squares estima;traland

_Var(n,) 1,
Var(rrp) T *Vp

p

The reliability is the ability with which a reseler can discriminate between people on their
growth rate of the polynomial of interest using sast squares estimate. The reliability can be
calculated using the HLM software.
6.4 Using the Optimal Design for repeated measurésals

The menu for the repeated measures is given bdlbg/menu includes option for
standardized or nonstandardized parameters.
Power on the y-axis (standardized)

Power for treatment on linear change

Power for treatment on quadratic change

Power for treatment on cubic change
Power on the y-axis (nonstandardized)

Power for treatment on linear change

Power for treatment on quadratic change

Power for treatment on cubic change
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Each of the power options function similarly, so iftustration purposes, we will use the option
for power for treatment on linear change.
6.5 Example

Recall that a team of researchers are planning endexperiment to determine whether
an intervention, enrollment at a charter schoofyriones academic achievement. Because of the
large number of applicants for the school, all etitd enter a lottery and half of the students are
randomly selected from the lottery and assigne@d¢eive the treatment, enroliment at the
charter school, while the other half of the studere enrolled in the local public school. The
researchers hypothesize that students enrolldeinharter school will have greater achievement
than the students at the regular public schoolyft@n to assess all the students prior to the
study and then one time for the next five yearseBlzon data from a pilot study, they expect the
level-1 variability to be 1.0 and the level-2 véaiidy to be 0.10. They also expect students’
academic growth to be linear. Section 6.6 presestenario in which the power determination
approach for conducting a power analysis is thet medsvant and provides the details for this
approach.

6.6 Power determination approach for conducting a pwer analysis

Based on past research, the researchers expactdalized effect size on the linear
growth parameter of 0.25. That is, the differencinear growth for students in the charter
school compared to students in the control scl®0I25. How many students are required to
detect an effect size of 0.25 with power of 0.807?

In this example, the total number of individualghe unknown parameter and the effect
size for planning is set at 0.25. Thus the most@pyate choice for the power analysis is to
include power on the y-axis. The steps follow:

Step 1: Select Person randomized trialsepeated measures Power on the y-axi® Power

for treatment on linear change. The blank scre@eans in Figure 6.1.
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Figure 6.1 Blank screen for Power on y-axis Power for treatment on linear change.
Step 2: Click on set. The set button brings upstireen in Figure 6.2.
Figure 6.2 The set button for linear change.

Repeated Measures Settings 5[

== I 1.00000 Please note that
_ o5 M = int(F*D + 1).
D= |~ Changes to F or D will

M= 6.00000 result in changes to M.

Wariahility of level-1 residual I 1.00000
Variability of level-1 coefficient I 1.00000
Standardized effect size I 0.40000

Cancel | )24

The following options appear within the set button:

F — specifies the frequency of the observation.
D — specifies the duration of the study.
M — is the total number of observations where KD=1. It is the product of the

frequency times the duration plus the 1 observatiahwas pre-treatment.

Variability of level-1 residual — This is the measment error, denoted?in the model.
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Variability of level-1 coefficient — This is theebween person variability on the

polynomial of interest. For a linear growth modasir,,in the model.

Pu

Standardized effect size — Thisds whered = 2L in the linear model.

V Tll
After clicking on the set button, set F=1, D=5, M~ériability of level-one residual = 1.0,

variability of level-1 coefficient = 0.10, and stiardized effect size = 0.25. We extend the x-axis

to 800. Figure 6.3 displays the power curve.

 Optimal Design =] 3]
Fle Desgn Working Help
. Repeated Measures - Power vs. =] 3]

o[ s e o] 2| o] @ u | X

i a =0.050
F = 1.000000
0.3 D = 5.000000
M =6.000000
0.3 % = 1.000000

1=0.100000

0.7

0.8

—eso0T
I

0.4

0.3+

0.2

0.1+

240 380 520 680 800

Mumber of participants

Figure 6.3 Power curve for repeated measures example.
Clicking along the trajectory, we can see that apipnately 790 individuals are necessary to
achieve power = 0.80. This is the same as 395ithas per treatment condition.

There is also a function available for repeatedsuees trials that are non-standardized. It
functions similarly to the example presented iis gection. However, there is no option for
MDES on the y-axis.
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Section IIl: Optimal Design for cluster randomizedtrials

Optimal Design for cluster randomized trials irts trials where intact groups, or
clusters, are randomly assigned to the treatmecmirol condition. For example, if students are
nested within classrooms and classrooms are rarydmsslgned to either the treatment or
control, the design is known as a two-level cluss&domized trial. There are fives designs in
this category: three that do not include blocking &vo that do include blocking. The non-
blocked designs include the two-level cluster ranced trial (2-level CRT), the three level
cluster randomized trials (3-level CRT), and thestédr randomized trial with repeated measures
(CRT RM). The blocked designs include the threellenvulti-site cluster randomized trials (3-
level MSCRT) and the four-level multi-site clustandomized trial (4-level MSCRT). We
describe the conceptual details of each desigrmpemdde a “how to” guide for each design in
the following 5 chapters.
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7.0 Two-level cluster randomized trials

Two-level cluster randomized trials are studiewimch individuals are nested within
clusters and the clusters are randomly assigndtettreatment or control condition. For
example, students are nested within classroomslasdrooms are randomly assigned to the
treatment or control condition. For example, a tedmesearchers is interested in the
effectiveness of a new math series. They decidartdomly assign schools to either the new
series or the standard series. They plan to tedests from one classroom within each school. In
this case, schools are the unit of randomizati@hthe students are nested within schools,
making this a two-level cluster randomized tridieTpower for a cluster randomized trial is
more complicated than a single level trial sinca¢hs more than one level. We begin by
examining the underlying statistical models.

7.1 The models
We can represent the data for a cluster randontidn hierarchical form, with

individuals nested within clusters. The level-1person-level model is:
Yy =Bo; €, e ~N@O0?) [7.1]
for i0{12,...,n} persons per cluster and’{12,...,J c}usters,

where Y, is the outcome for persann clusterj;
Bo,; is the mean for clustgr

g, is the error associated with each person; and

o? is the within-cluster variance.

The level-2 model, or cluster-level model is:
Boi = Voo + VoWV, + U, Up; ~N(0,7) [7.2]
where y,, is the grand mean;
Vo1 IS the mean difference between the treatment antta group or the main effect of
treatment;

w, is the treatment contrast indicator, % for tresttrand -¥4 for control;

Uo; is the random effect associated with each cluatet;
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r Is the variance between clusters.

Replacing (2) in (1) yields the mixed model:
Yi = Voot VuW, +Uy, +&, Uy ~N(©O7) andg ~N(0,07%). [7.3]

7.2 Testing the treatment effect

We are primarily interested in the main effectrebtment,),,, estimated by:
Vou =Ye-VYc, [7.4]

whereYe is the mean for the experimental group afhdis the mean for the control group.
When each treatment has an equal numlb2y of clusters, the variance of the main effect of
treatment is (Raudenbush, 1997):
Ar+0%In)

J

wheren is the total number of participants per clustet &rs the total number of clusters.

var(yy,) = [7.5]

We can use hypothesis testing to determine ifrtha effect of treatment is “statistically
significant,” that is, not readily attributable ¢bance. Recall that a two-tailed null hypothesis
states there is no difference whereas the altemhiipothesis states there is a difference. In
symbols:

Ho iy =0

H, iy, #0
If the data are balanced, that is, there is anleguaber of participants in each cluster, we can
use the results of a two factor nested ANOVA to ties main effect of treatmenfThe test
statistic is ark statistic, which compares treatment variance ustel variance. ThE statistic is

defined as:

(MSreatmem)
MS

cluster)

Fstatistic= [7.6]

Note that as the number of clusters J increasdmutitboound, th& statistic converges to the

ratio of expected mean squares, which is defined as

® This is the same result we would obtain using @level hierarchical linear model (Equations laheégimated
by means of restricted maximum likelihood.
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E(Mstreatment) - nr + 02 + n‘]ygl /4 =1+ n‘]ygl /4

7.7
E(Mscluster) nr + 02 nr + 0'2 [ ]
and can be rewritten as:
2
E(Mareatmenp =1+ 1 where) = r]‘]y01 /42 . [78]
E(MScIuster) nr +o

If the null hypothesis is true, thestatistic follows a centrdt distribution with 1 degree of
freedom for the numerator ade? degrees of freedom for the denominator. UndeictntraF
distribution, we would expect tHestatistic to be approximately 1. In other wordere is no

variation between treatments g =0and thenJy?, /4 term in the numerator of the expected
mean square ratio goes towards 0. We see thiati® the ratio of expected mean squares thus

E(MSreatmem) - nr+0—2

=1+A=1
E(Mscluster) nr+ 02

reduces to

If the null hypothesis is false so that there igeatment difference, that jg, # 0, theF

statistic follows a non-centr& distribution with 1 degree of freedom for the nuater andl-2
degrees of freedom for the denominator. Then the ch expected mean squares becomes the
non-centraF distribution, characterized by a non-centralityguaeter,A (See Equation 7.8).

A can be rewritten as:

A= y‘il [7.9]
Ar+o°/n)ld

Note thatA, known as the non-centrality parameter, is thie @&tthe squared main effect to the
variance of the estimate of the treatment effeqtidEon 9 clearly shows that the non-centrality
parameter , is a function ofy,,, n, J, r, ando”.

The non-centrality parameter is strongly relatethe power of the test. Asincreases,
the power increases. Increasing the treatmenttaffeeased . Thus, if we are trying to detect a
larger difference in meangd,increases and so the power also increases. Ndtthéha
denominator is identical to the variance of thatiment effect (Equation 7.5). So to
increasel we could decrease the variance of the main effieiteatment. Because the standard
error of the treatment effect is more commonly gésed, instead of referring to the variance of
the main effect of treatment, we often refer tostendard error of the main effect of treatment,
which is simply:
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S1=07%) ~1 w [7.10]

From equation 7.10, we can see that the sampls affect the standard error and hence the
power of the test. In general, increasindecreases the standard error of the treatmerut efffies
increasing the power. However, at some point, esiregn without increasing the number of

clusters,, provides no further benefit. Thus as-» o« , we can see that for Equation 10,
SH}Y,,) =2Jr/J, will not be zero unless = 0. Also, as the total number of clustels,

increases, the power to detect significant diffeesnalso increases. Asncreases towards
infinity, the power approaches 1 regardless.ofhis is because addncreases towards infinity,
the standard error (7.10) gets infinitely smallisTéauses the non-centrality parameter to
increase towards infinity, which results in the gowpproaching 1. Intuitively this makes us
think that we should just continue to incredsmtil the desired power is achieved. However,
increasing) or adding additional clusters may not be feadiloie to budgetary constraints.
7.3 Standardized notation

We standardize the notation to give a more meauirgfinition for the parameters in
the model and to facilitate the power analysissti-ive redefine the variability in terms of the

intra-class correlation coefficien, The intra-class correlatiop, is a ratio of the variability

between clusters to the total variability:

p=—"t [7.11]

r+0?

where 7 is the variation between clusters;

o’is the variation within clusters; and

r +o?is the total variation.
For US data sets on school achievemertypically ranges between 0.15 and 0.25 (Bloom,, Bos
& Lee, 1999; Bloom, Richburg-Hayes, & Black, 200#edges & Hedberg, 2007; Schochet,
2008). In school-based interventions design to owpmental healthp will generally be
smaller, in the range of 0.01 to 0.05 (Murray & Bhh995) . Because + o is the total
variation, we can constrain it to be 1. Algebrai@mpulation of the formula then reveals

p=1 and1l-p=0°. As p increases we know more of the variation is dueeiween-cluster
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variability. Replacingr and o*with pand 1-p in the standard error formula (equation 7.10),
the standard error of the main effect of treatnoamt be rewritten as:

AT +0?In)l(r + 0?) :\/4(,0+ @- p)/n)
J J '

[7.12]

SE(Vy, ! (r+0?) :\/

From equation 7.12, we can see that increasedvalue increase the standard error thus
decreasing the power. Also, agicreases, the effect ofdecreases. Therefore, if there is a lot of

variability between clusters, we gain more poweirzyeasing the number of clusters sampled.
The key idea forp is that power increases gsdecreases for a fixadandJ.

Next, we can standardize the true treatment efBsxtause data for different experiments
is collected in different scales, standardizingdhta makes the results meaningful to any
researcher, not just someone who is familiar wigiadicular data set. We define the standardize
effect sizeg, as the population means difference of the twaigsalivided by the standard

deviation of the outcome:

o= Yoo [7.13]
\T +0°
Where yy, = pe — e ;
Ue is the population mean for the experimental greunat

MU is the population mean for the control group;

Given g? and1 , the standardized effect sizé, is estimated by:

g=Ye~ Yo [7.14]
r+o°

The researcher must specify a desired minimum teffee to calculate the power of the
test. Quantifying the treatment effect is not edtsgepends on the context of the study, the
sample, and the outcomes in the study (Bloom, Biick, & Lipsey, 2007).

Recall that the power of the test is driven byriba-centrality parametet,(equation
7.9). We can redefind in standardized notation as shown below:

_ ye (T +07) _ ni’/4 _ Jo?
Ar+o’InJ(T+0®) np+1-p) 4p+@0-p)/n)

[7.15]

This allows us to calculate the power of the asretion ofn, J, d, and p.
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7.4 Using a covariate to increase power

From a power perspective, including a covariatelmaextremely helpful because if the
covariate is strongly correlated with the outcorhean greatly increase the precision of the
estimate and hence the power of the study. We fsgesifically on including a covariate at the
cluster level. This may be an aggregated covarsate) as pre-test scores aggregated across
schools or school SES. Empirical work has showhgimailar gains in power for including an
individual level or cluster level covariate (BlooRichburg-Hayes, & Black, 2007). Because it is
generally less time consuming and less expensigeltect a cluster level covariate, we focus on
level-2 covariates.

When we include a covariate in the design, theeniadditional component that
influences the power of the test: the strengtthefdorrelation between the covariate and the true
cluster mean outcome. The strength of the cormeldietween the covariate and the true cluster

mean is denoteg, , . We adopt this notation becaugg; is the true mean outcome for cluster
and X, is the covariate. The residual level-2 variancejraxplained variance after accounting
for the covariate, is denoted. As we will see later, the stronger the correfatm,, , the

smaller the conditional level 2 variance,, compared to the unconditional level 2 variance,

and the greater the benefit of the covariate ineiasing precision and power. Let’s take a closer
look at the model with a cluster-level covariate.
7.5 The model with a cluster-level covariate

In hierarchical form, the level-1 model for a ckrstandomized trial with a cluster-level
covariate is the same as the model in equatiomé.l@vel-2 model, or cluster-level model
differs from a simple cluster randomized trial hesait includes a term for the cluster-level
covariate. The model with the covariate is:

Boi = Voo t VoV, + Voo X + Uy, Up; ~N(@©,7) [7.16]
where y,, is the grand mean;

Vo1 IS the mean difference between the treatment antta group or the main effect of

treatment;

Vo2 IS the regression coefficient for the cluster-les@variate;

W, is the treatment contrast indicator, Y% for tresitrand -Y% for control;
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X, s the cluster-level covariate, centered arousidrioup mean;

Uo; is the random effect associated with each cluated;

7, Is the residual variance between clusters.

Note that the between-cluster variarq;e,is now the residual variance conditional on the

cluster level covariate X. For simplicity, we as®uithere is no interaction between the cluster
level covariate, X, and the treatment group, W sTikian assumption that can be relaxed and in
general should be checked given that a researslmtierested in how the treatment effect may
vary at different levels of the covariate.
7.6 Testing the treatment effect (including a clustr-level covariate)

Similar to the cluster randomized trial without@variate, we are interested in the main
effect of treatment, or the difference betweenttbatment average and control average adjusting

for the covariate. However, now it is estimated by:

A

Vor=Ye—=Yc— P, (Xe— Xc) [7.17]
whereYe is the mean for the experimental group;

Yc is the mean for the control group;

X e is the covariate mean for the experimental graumt,

X ¢ is the covariate mean for the control group.

Note that the estimated main effect of treatmeoks like the estimated effect without
the covariate except that here we are adjustingdatment group differences in the covariate.
For normally distributed covariates, the variantthe main effect is (Raudenbush, 1997):

A1, +0/n) [1+ 1 }
J J-4

Var(f) = [7.18]

where nis the total number of subjects;

Jis the total number of clusters; and

. -y . 2
7, is the conditional level 2 varianc€,~ p;; )7, .

If the data are balanced, we can use the redudtsmiested analysis of covariance with

random effects for clusters and fixed effects far treatment and covariate. The test statistic is
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anF statistic, which compares adjusted treatment magdo the adjusted cluster variance. Fhe

statistic is defined as:

M S(reatm ent
’

clusters

where MS,, e @aNd MS

Cluster

Fstatistic=

are now adjusted for the covariate.

Note that thd- statistic converges to the ratio of expected nseprares, defined as:

E(Mstreatmem) :1+A
E(Msclusters) ”

TheF test follows a non-centr&l distribution,F(1,J-3, A,) in the case of a cluster-level

covariate where the non-centrality parametgr, is:

A, :L‘”2 [7.19]
A, +0°In)

and

Iy = @- pfﬁ’o)r .
From equations 7.18 and 7.19, we can see thatrttveger the correlationp,, , the smallerr,,
and the greater the increase in the power of #te te

The non-centrality parameter with and without ¢bgariate are closely related. If the
correlation between the covariate and the clustezlimean is Or, reduces tar and the non-
centrality parameter reducesitahe non-centrality parameter in the case of no catea

Although we are reducing the between cluster vagaone consequence of including a
covariate is that we lose one degree of freedorthdrcase of no covariate, thaest follows a

non-centraF distribution,F(1, J-2, A)whereas in the covariate case we h&@gJ -3 4, ).

This may be a potential problem in a study withmak number of clusters.
The non-centrality parameter can be defined indstedized notation. Recall that in

Ior

equation 7.19 we define the non-centrality paramasgel, = —————
Ar, +0°/n)

. Replacing

Vio

NT+0?

Ty = (1—,0X2ﬂ0)r , constrainingr + o = land definingd” = we can rewrited, as a

function of &, p and Pys, » 84S shown below:
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__ Il +o) 35° _3IA-p)
At +o’Inn +0® A= pg)p+A-p)inl  AQ-pg)p+A-p)/n]

X

The only difference in the non-centrality paramétethe case of the cluster level covariate is the

correction factor(l - ,ofﬁo) . The correction factor only affecjs, the between-cluster variation

since the covariate is a cluster-level covariatetl#e correlation between the covariate and the
cluster level means increases, the unconditionied-iclass correlation decreases. This results in
an increase in the value of the non-centrality petar and therefore an increase in the power of
the test.
7.8 Using the Optimal Design for two-level clusterandomized trials

The menu for the 2-level CRT is shown below antlwa found by clicking on the
following: Design—> Cluster randomized trials with person level outesr® Cluster
randomized trials> Treatment at level 2. In this chapter we focusomtinuous outcomes thus
the first two options are shown below.
Power on y-axis (continuous outcomes)

Power vs. cluster siza)(

Power vs. number of clusterd (

Power vs. intra-class cluster correlation (rho)

Power vs. effect size (delta)

Power vs. proportion of explained variation bydeg covariate (R2)
MDES on y-axis (continuous outcomes)

MDES vs. cluster sizen]

MDES vs. number of clusterd)(

MDES vs. intra-class cluster correlation (rho)

MDES vs. powerK)

MDES vs. proportion of explained variation by le2ecovariate (R2)

The first set of options present the power on Haig and either the cluster size, number of
clusters, intraclass correlation, effect size, rpprtion of explained variation by level-2

covariate to vary on the x-axis. The second septibns present the MDES on the y-axis and

* Note that this differs from Version 1.0 of the gram. In Version 1.0, the program asked for a daver
correlation. In Version 2.0, the program asks Far proportion of explained variation by the level®ariate, R
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either the cluster size, number of clusters, itdiggcorrelation, power, or proportion of
explained variation by level-2 covariate to varytba x-axis. We present an example below and
guide the user through the steps for approachieg@xlample via the power determination
approach or the effect size approach.
7.9 Example

Suppose a team of researchers develop a new litpragram for I graders. The
founders of the new program propose that studehtsparticipate in the program will have
increased reading achievement. They plan to tedeats who participate in the new program
(experimental group) and students who participatié regular program (control group) using a
standardized reading test to determine if studesitsy the new program score higher. The
researchers have access to last yeaggdde average reading test scores for each sdPast.
data reveals that last years scores explain 49%eofariation in test scores. The researchers
want to design a cluster randomized trial with etitd nested within schools where schools are
the unit of randomization. Section 7.10 presergsamario in which the power determination
approach for conducting a power analysis is moglieable and the details of how to do the
power analysis using OD. Section 7.11 presentgm@asm in which the effect size approach is
most applicable the details of how to do the poavealysis using OD.
7.10 Power determination approach for conducting @ower analysis

Based on past studies, the researchers expect 2b@atcent of the variation to lie
between schools and are interested in detectirggfact size of at least 0.25 with adequate
power. Assuming that 20 students are willing tdipgrate in the study from each school, how
many schools (clusters) are necessary to achiewernp0.80? How many clusters are required
after including the cluster-level covariate whictpkins 49% of the variation in test scores?

In Scenario 1, the number of clustersis unknown. As a result, we want to select the
power vs. number of clusterd) option. This allows the number of clusters toyalong the x-
axis. The steps for conducting the power analysiew.
Step 1: Select Desige» Cluster randomized trials with person level outesm» Cluster
randomized trials> Treatment at level-2 Power on y-axis (continuous outcomg)Power vs.
number of clusters]f as shown in Figure 7.1.

The blank screen for Power vs. number of clust®rs(n Figure 7.1.
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Figure 7.1.Initial screen.

The toolbar at the top includes the parametersired|tor calculating the power, sample size
within cluster (n), effect size), intraclass correlatiorp), and explained proportion of variance
by covariate. The number of clusted¥ does not appear on the toolbar because it valoes)

the x-axis.

Step 2: Click on n. Set n(1) = 20 (the default exBy clicking on n(1) = 20, the default power
curves appear. However, we must first set the mhdit parameters to match the values in the
particular example before we interpret the curves.

Step 3: Click ord. Set delta (1) = 0.25 and delete delta (2).

Step 4: Click orp. Set rho (1) = 0.20 and delete rho (2). The respjbower curve appears in
figure 7.2.
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Number of clusters

Figure 7.2.Resulting power curve.
We can see that the curve does not extend to poine80 so we need to extend the x-axis.

Step 5: Click on <x<. Set the maximum to 150. Txieeded power curve appears in Figure 7.3.

» Optimal Design =10l x|

Fle Desio;n Hep

I-TEY
| n| 8| p|rd || k| me]om| @ e X]

o =0.050
n=20

£=025p=020

—o=o0T
1

33 82 91 120 149

Number of clusters

Figure 7.3 Extended power curve.

Clicking along the power curve, we can see thattbgdl clusters are required for the study, 61
in the treatment condition and 61 in the controidibon. However, we have not accounted for
the cluster-level covariate yet, which is a strgtiy increasing the precision of the estimate and
the power.

Step 6: Click on R. Set R2 — 2 equal to 0.49. Twwér curves appear as shown in Figure 7.4.
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Figure 7.4 Two power curves.

According to the key, the dotted trajectory is plosver curve when the covariate is included. In
this case, approximately 74 total clusters are e@ea reduction of 48 clusters, which may
greatly reduce the cost of the study.

The example provided in this section placed timepda size on the x-axis. However, any
of the other parameters could be placed on thesamd the steps could easily be adapted to
conduct the power analysis.

7.11 Effect size approach for conducting a power atysis

The researchers conducting the study are limit&&Dtschools, 30 in the treatment and 30
in the control group with 20 students per schoals&] on past studies, they expect about 20
percent of the variation to lie between schoolsatWé the MDES the researchers can find with
power = 0.80? Assuming the cluster-level covarggelains 49% of the variation in test scores,
what is the MDES?

In Scenario 2, the MDES is unknown so it makes nserese to select an option with the
MDES on the y-axis. One option is to select MDEStotal number of clusterg); This will
allow the user to see how the MDES changes asdidumnof the total number of clusters
holding all other parameters constant. Using thi@@ach is very useful but also requires that
after the MDES is determined, the researcher cotisaliterature or findings from a pilot study
to determine if the MDES is reasonable. The stepsdnducting the power analysis follow.
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Step 1: Select Desiger Cluster randomized trials with person level outesr» Cluster
randomized trials> Treatment at level 2 Power on y-axis (continuous outcon®2)MDES vs.

total number of clustergl as shown in Figure 7.5.

- 2-level - Minimum ecl effective sizi
ufn [P [ plshsufes] L [uelo] 5o x|

Figure 7.5.Blank screen for MDES vs. total number of clusters

Step 2: Click on n. Set n(1) = 20 (the default exBy clicking on n(1) = 20, the default power
curves appear. However, we must first set the mhdit parameters to match the values in the
particular example before we interpret the curves.

Step 3: Click orP. SetJ (1) = 0.80.

Step 4: Click orp. Set rho (1) = 0.20 and delete rho (2). The respjbower curve appears in
Figure 7.6.
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Figure 7.6.Power curve with specified parameters.

Clicking along the trajectory we can see thatXer60, the MDES is approximately 0.36. Let’s
see what happens when we add a cluster-level ateari

Step 5: Click on R. Set R — 2 = 0.49. Figure 7spldiys the two power curves.

Hle Design Working Help
. 2-level CRT - Minimum detec =181
o|n P | p[rafoda] k2| re]swe] @ fas] X

@-n050
n-20

P=0:80,0= 020

— —P=080p= 020 R =049

[ R

@

01+

24 43 62 &l 100

Mumber of clusters

Figure 7.7 Power curve with cluster-level covariate.
Clicking along the dotted trajectory, the MDES witk 60 is 0.29, reducing the MDES by 0.07
effect size units.

The examples in this section are meant to proatdgiide to users for how to use the 2-
level CRT. We described Power vs. number of clssfBrand MDES vs. number of clustedd (
The other options function similarly, and simplagd a different parameter on the x-axis. The
choice of which module is most appropriate depamdhe unknown parameters. However, all
modules yield the same results if identical paranmsedire used so the choice depends on what

module is most closely aligned with the known anknown parameters in a study.
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8.0 Three-level cluster randomized trials (3-leveCRT)

Three-level cluster randomized trials are studieshich individuals are nested within
clusters, clusters are nested within sites, ared site randomly assigned to the treatment or
control condition. For example, students are nesfétdn classrooms and classrooms are nested
within schools. Suppose a team of researchersiteested in the effectiveness of a
comprehensive school reform (CSR) on math outcoiftesy decide to randomly assign schools
to either the new CSR or the current program. Tlag to test students from multiple
classrooms within each school. In this case, ssha@ the unit of randomization, but the
students are nested within classrooms which aredegthin schools making this a 3-level
CRT. The importance of including the classroom lev¢hat it allows us to examine the
variability between classrooms. If we suspect thate will be significant differences among
classrooms, or teachers, it is important to inclinie level in the design and analysis. The
additional level makes the power for a 3-level QRdre complex than for a 2-level CRT. We
begin by examining the underlying statistical madel
8.1 The model

We can represent the data from this design as persested within clusters nested within

sites.The level 1, or person-level model is:
Yik = Top + € € ~ N, 02) [8.1]
where i =1,...,npersons per cluster

j=1,...J clusters per site
k=1,...K sites

71, is the mean for clust¢in sitek
e, IS the error associated with each person

o?is the within-cluster variance.

The level-2 model, or cluster-level model, is:
T = Booc + Fojk fox ~ N ©r,) [8.2]
where S, is the mean for sitk

roi 1S the random effect associated with each cluster
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r,.is the variance between clusters within sites.
The level-3 model, or site-level model, is:

Book = Vooo + Vool * oo Upo ~ N (0,74 ) [8.3]
where ), is the estimated grand mean

Yoo1 IS the treatment effect (“main effect of treatmignt

W, is 0.5 for treatment and —0.5 for control

Uy IS the random effect associated with each sitenmea

7, is the residual variance between site means.

Note that the randomization in this design occtite\ael 3.
8.2 Testing the treatment effect

The treatment effect is estimated at level 3 arteiotedy,,,. Given a balanced design,

it is estimated by:

Voo =Ye—Yc [8.4]
where Ye is the mean for the experimental group

Yc is the mean for the control group.
Because of the nested structure of the data, weosemclusters and sites in order to estimate
the treatment effect. The variance of the estimaEsiment effect combines the variance at all

three levels, the variance between-site megnsthe within-site or between-cluster variance,

r,,, and the within-cluster or between-person variamce,The variance of the treatment effect

is estimated by:

A1, +(1,+0°/n)/J]
K

If the data are balanced, we can use the resu#tsiebted analysis of variance with

[8.5]

Var(yon) =

random effects for the clusters and sites andetifeffect for the treatment. The test statistic is

anF statistic. Thd- test follows a non-centr& distribution,F(1, K-2; A). Below is the

noncentrality parameter for the tebt,which is the ratio of the squared-treatment ¢ffeche

variance of the treatment effect estimate.
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A= yggl _ K V601 [8.6]
Var(y,,.) A, +(r,+0’In)/J]
Increasing the noncentrality parameter incredsepower to detect the treatment effect.
Let’'s examine how the researcher can increasedheemtrality parameter to increase the power
of the test. Because this model assumes no cossyiake cannot reduce any of the variance

components s, , 7,, and o?are not under the control of the researcher. Thgr@emaining

components of the noncentrality parameter aredhgpke size and the size of the treatment
effect. The size of the treatment effect is oftasddl on theory, past studies, or a pilot study
which means the researcher cannot inflate theafitee treatment effect to increase power
without decreasing the theoretical or practicalatesions of the study. Thus increasing the
sample size is the primary option for increasirgpbwer. From equation 8.6, we can see that
increasing the number of sitds, is the most effective strategy to increase thegupfollowed
by the number of clusterd, and finally the number of persons per cluster,
8.3 Standardized notation

Thus far we have focused on the unstandardizecinddwever researchers typically
discuss standardized effect sizes. In the starmddnodel, without loss of generality, we set the

sum of the within-cluster variance;”, the between-cluster variancg,, and the between-site
variance for the site means, , equal to 1. Since we use three components cdveeito

standardize the model, we have two intra-clasetations, o, and p.z- The first intra-class

correlationp,..p , COrresponds to the between-cluster varianceivel& the total variance,

Piever = ————— . The second intra-class correlatign,,.s , is the between-site variance
Tpt Tﬁoo to
. - - - . Tﬂ
relative to the total between and within site vac®, g s = .
z-;500 + T” +to

In standardized notation, the non-centrality pa@m/ , can be rewritten as:
1= Ko?
4{ pleveIS + [Iolevelz + (1_ Iolevelz - Iolevels) / n] / ‘]}

8.7]

Yoo

whered is the standardized main effect of treatment )
\/ Tp tT,+ o?
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Since the total variance is constrained to 1, usktise Optimal Design can think gf,_ and
P as estimates of the proportion of variance at |@vahd level 3.

8.4 Using a covariate to increase power

Often a covariate may be available to the researdihe researchers can use this
information to reduce the level-3 variability, tietbetween-site variance and increase the power
of the test. For the 3-level CRT, we restrict otiertion to level-3 covariates. Often they are less
expensive to collect, more readily available, aad increase the precision by a similar margin
of a lower level covariate. Thus if a lower levelariate is available, we assume it is aggregated
to level-3. We also assume it has met the assungpta inclusion. Including a site-level
covariate will not effect the between-cluster vhiligy, 7, or the within-cluster variabilityg?.
We useSto denote a site-level covariate in the model. pitoportion of variance explained by
the site-level covariate is defined pgm . The remaining sections in this chapter revigt th
model, treatment effect, and standardized notatgsuming the availability of a site-level
covariate.
8.5 The model with a covariate

Levels 1 and 2 of the model with a site-level atata are identical to the level 1 and 2
equations (equations 1 and 2) for the case witbavariate. This is because inclusion of a site-
level covariate does not effect the variabilitythie lower levels in the model. The new level 3, or
site level model is:

Boo = Yooo + Yoo * Voo2Sc * Uoo Ugo ~ N (O, T/300|s) [8.8]

NOte:TﬂooUS = (1_ pszﬁoo)rﬂoo

where ), IS the estimated grand mean

Yoo1 IS the treatment effect (“main effect of treatmignt

Yoo2 1S the regression coefficient for the level 3 auata

W, is 0.5 for treatment and —0.5 for control

S, is the level 3 covariate

U,y IS the random effect associated with each sitenmea

7, 1S the residual variance between site means conditon the site-level covariate
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Note that the level 3 variance is adjusted fordireariate. The smaller variance will increase the
precision of the estimate thus increasing the pa#éne test.

Given a balanced design, the main effect of treatnseestimated as the difference in the
treatment and control groups adjusted for thelsite} covariate:

Voor = Ye=Yc = Jopp(Se—Sc) [8.9]
The variance of the treatment effect is:

A, +(r,+0%In)/]]

- [8.10]

Var(yoo | S) =

Note that only the between-site variarre, is adjusted for inclusion of the covariate siitds

at the covariate is at the site level.
Similar to the case with no covariate, to testrtteen effect of treatment we use an F-

statistic which follows a non-central F distributjd=(1,K-3, A,) where:

ST ar, - (ljny%laz/n)u] | 811

The noncentrality parameter for the test for thenneffect of treatment looks similar to equation
6, the case with no covariate, except that thd [@wariance and the estimate of the treatment
effect are adjusted for the cluster level covaribligte that reducing the variability at level 3
gives the researcher another tool for increasiegitincentrality parameter and increasing the
power. In cases when the between-site varianceuatsdor a high proportion of the variance,
finding a site-level covariate that is highly cdated with the site-level outcome can be very
beneficial. It may also help reduce the numbeitessecessary to achieve a specified power,
which can reduce the cost of the study.

Following the same logic as the three level mod#t wo covariates, it is important to

standardize the model. The noncentrality paraneteressed in standardized notation is:

* 2

_ Ko
) 4{pI:3veI3 +[pI:3veI2 + (1_ pl*eveIZ _pl*eveIS)/n]/‘]} [812]
where
Ouep IS the intra-class correlation, ., :#2, or the proportion of variance

T” + Z-;300|3 to
among clusters relative to the total variation ¢bodal on the level-3 covariate.
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Tﬂoo|5

" is the intra-class correlation. . =
pleveB AeveB + T” +0

T s

5, or the proportion of variance

among sites relative to the total variation cowmdiéil on the level-3 covariate.
d" is the standardized main effect of treatment domthl on the level-3

o

covariatey” = )
2
Tﬁoo|3 t T” to

Because the conditional standardized quantifigs, , pe.s » andd , are frequently

unknown, the program asks the user to enter thendittonal parameters. The program
calculates the conditional standardized valuesagsdhe value the user specifies for the

percent of variance reduction at levelRs, ., .

8.6 Using the Optimal Design for three-level clusteandomized trials

This section focuses on how to use the Optimal dresoftware to design a three-level
cluster randomized trial with a continuous outco®ection 8.7 presents an example. The
remaining two sections explore how to conduct agraamalysis using 1) the power
determination approach, and 2) the effect sizecgmtr.

The menu for the 3-level CRT is shown below anmdlwafound by clicking on the
following: Design—> Cluster randomized trials with person level outesr® Cluster
randomized trials> Treatment at level 3. In this chapter we focugsomntinuous outcomes thus
the first two options are shown below.

Power on y-axis (continuous outcomes)

Power vs. cluster size)(

Power vs. number of clusters per siie (

Power vs. number of siteK)

Power vs. effect size (delta)

Power vs. proportion of explained variation bydkethree covariate (R2)

MDES on y-axis (continuous outcomes)

MDES vs. cluster sizen]

MDES vs. number of clusters per sid (

MDES vs. number of site&}

MDES vs. powerR)
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MDES vs. proportion of explained variation by letteree covariate (R2)
The first set of options present the power on taig and either the cluster size, number of
clusters per site, number of sites, effect siz@roportion of explained variation by level-3
covariate to vary on the x-axis. The second septibns present the MDES on the y-axis and
either the cluster size, number of clusters per siimber of sites, power, or proportion of
explained variation by level-3 covariate to varytba x-axis. We present an example below and
guide the user through the steps for approachieg@xlample via the power determination
approach or the effect size approach.
8.7 Example

Suppose a team of researchers are interestedimgtése effectiveness of a whole school
reform model. They plan to implement the prograrthatschool level and set up an experiment
which randomly assigns schools to either the nédarmemodel or the current practice. They
suspect there may be teacher level differencelsesoplan to set up a three level study with
students nested within teachers nested within dsh@be primary outcome of interest is math
achievement. The researchers plan to test studdratparticipate in the new program
(experimental group) and students who participatié regular program (control group) using a
standardized reading test to determine if studesitsy the new program score higher. The
researchers have access to last yeaggdde average math test scores for each schatldBia
reveals that last years scores explain 49% of énaton in test scores. Section 8.8 presents a
scenario in which the power determination apprdaclconducting a power analysis is most
applicable and the details of how to do the poweiysis using OD. Section 8.9 presents a
scenario in which the effect size approach is rapgticable the details of how to do the power
analysis using OD.
8.8 Power determination approach for conducting a pwer analysis

Based on past studies, the researchers expect Bbpetrcent of the variation to lie
between schools and 7 percent of the variatioretbdtween classrooms within schools. They
are interested in detecting an effect size ofadtl®.25 with adequate power. Assuming that 20
students are willing to participate in the studynfreach classroom, and there are 12 teachers per

school (assume an elementary school where eadhetetsaches one class) how many schools
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(sites) are necessary to achieve power = 0.80? rHamy schools are required after including the
school-level covariate which explains 49% of theat#on in test scores?

In Scenario 1, the number of sit&s,is unknown. As a result, we want to select the
power vs. number of siteK) option. This allows the number of clusters toyalong the x-axis.
The steps for conducting the power analysis follow.

Step 1: Select Desiger Cluster randomized trials with person level outesr» Cluster
randomized trials> Treatment at level & Power on y-axis (continuous outcom#)Power vs.
number of sites) as shown in Figure 8.1.

The blank screen for Power vs. number of sikdsg in Figure 8.1.

ol
Fle Design Hebp

I
o | 0| T8 [serE[sn|ss] k| ne]om| @ as] X

Figure 8.1 Initial screen for cluster randomized trials.

The toolbar at the top includes the parametersiredjfor calculating the power: sample size
within cluster (n), number of clusters per siig éffect size ), and explained proportion of
variance by covariate. The set button asks thetosgecify the level-2 intraclass correlation,

P, and the level-3 intraclass correlatiqn, . The number of site§ does not appear on the

toolbar because it varies along the x-axis.

Step 2: Click on n. Set n(1) = 20. By clicking ofi= 20, the default power curves appear.
However, we must first set the additional paransetematch the values in the particular
example before we interpret the curves.

Step 3: Click onl. SetJ(1) = 12. This is the number of classrooms per scho

Step 4: Click ord. Set delta (1) = 0.25 and delete delta (2).
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Step 5: Click on set. Sg4, = 0.07 andp, = 0.13. The resulting power curve appears in figure

=loix|
Fle Design Help
- 3-level CRT - Power vs. number of sites (K) =10 x|

o[ 1] & [so s L] ve| | 3 s X
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1
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Figure 8.2. Power curve with specified parameters.
We can see that the curve does not extend to poWe80 so we need to extend the x-axis.

Step 6: Click on <x<. Set the maximum to 100. Txiereded power curve appears in Figure 8.3.

» Optimal Design (=] ]
File Desgn Help
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Figure 8.3 Extended power curve.

Clicking along the power curve, we can see thabia schools are required for the study, 36 in
the treatment condition and 36 in the control cbadi However, we have not accounted for the
cluster-level covariate yet, which is a strategyihereasing the precision of the estimate and the
power of the study.
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Step 7: Click on R. Set’R- (2) = to 0.49. Two power curves appear as shiaviigure 8.4.

ST=IE|
Fle Design Help

=
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Figure 8.4.Two power curves.

According to the key, the dotted trajectory is plosver curve when the covariate is included. In
this case, approximately 40 total schools are mealeeduction of 32 schools, which may
greatly reduce the cost of the study.

The example provided in this section placed timepda size on the x-axis. However, any
of the other parameters could be placed on theéxamnd the steps could easily be adapted to
conduct the power analysis.

8.9 Effect size approach for conducting a power argsis

The researchers conducting the study are limit&Dtschools, 30 in the treatment and 30
in the control group with 20 students per classeBlaon past studies, they expect about 13
percent of the variation to lie between schools @mout 7 percent of the variation to lie between
classrooms within schools. What is the MDES theaeshers can find with power = 0.807?
Assuming the school-level covariate explains 49%hefvariation in test scores, what is the
MDES?

In Scenario 2, the MDES is unknown so it makes nserese to select an option with the
MDES on the y-axis. One option is to select MDEStotal number of siteX(. This allows the
user to see how the MDES changes as a functidmegbadwer holding all other parameters
constant. Using this approach is very useful bst abquires that after the MDES is determined,
the researcher consult the literature or findingaifa pilot study to determine if the MDES is

reasonable. The steps for conducting the powewysisdbllow.
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Step 1: Select Desige» Cluster randomized trials with person level outesr» Cluster
randomized trials> Treatment at level  Power on y-axis (continuous outconi2)MDES

vs. number of site( as shown in Figure 8.5.

Il
Fle Design Working Help

-lnx)
c|n |7 [P [se[rdfonlss] Lo ve|om| @ o]

Figure 8.5.Initial blank screen of MDES vs. number of sit&$ (

Step 2: Click on n. Set n(1) = 25. By clicking ofin= 25, the default power curves appear.
However, we must first set the additional paransetematch the values in the particular
example before we interpret the curves.

Step 3: Click onl. SetJ (1) = 12.

Step 4: Click orP. SetP (1) = 0.80.

Step 5: Click on set. Sgt, = 0.07 andp; = 0.13. The resulting power curve appears in Figure

8.6.
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Figure 8.6.Power curve.
Clicking along the trajectory we can see that€or 30, the MDES is approximately 0.40. Let’'s
see what happens when we add a cluster-level etgari

Step 6: Click on R. Set’R- 2 = 0.49. Figure 8.7 displays the two power earv

» Dptimal Design ] 3]
Fle Design Working Help
- 3-level CRT - Minimum detectable effact size ol x|
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Figure 8.7. MDES vs. power with a covariate.
Clicking along the dotted trajectory, the MDES with= 30 is 0.31, reducing the MDES by 0.09
effect size units.

The examples in this section are meant to proatdgiide to users for how to use the 3-
level CRT. We described Power vs. number of skgsad MDES vs. number of sites)( The

other options function similarly, and simply plaéifferent parameter on the x-axis. The choice
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of which module is most appropriate depends orutti@own parameters. However, all modules
yield the same results if identical parametersuaezl so the choice depends on what module is

most closely aligned with the known and unknowrepseters in a study.
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9.0 Multi-site Cluster Randomized Trials (3-level MSCRT)

A design using blocking before randomizing grooas be thought of as a multisite
cluster randomized trial (MSCRT), an extensionhaf tluster randomized trial. In a MSCRT,
the site is the block and clusters are randomligaed to treatment and control within each site.
Sometimes the sites are natural administrativesufut example, schools where classrooms are
randomly assigned to treatment within schools. Sones sites are formed by the researcher by
creating blocks of units that are similar. For epéanschools may be matched according to
percent of students who receive free/reduced IWtithin each match, one school is randomly
assigned to the treatment condition and one sdbabk control condition. Students are nested
within schools. As discussed in Section |, pre-tantation blocking is often employed to
increase the precision of the estimate and the pofitbe study and/or to improve the face
validity of the study.

The choice of whether to treat the site effectsaaglom or fixed affects the power. We
discuss the models assuming the sites are randentfirst followed by the models assuming
fixed site effects.

9.1 The model (assuming random site effects)
We can represent data from a multi-site clustedoanized trial as a three level model,

persons nested within clusters nested within sites.level-1 model, or person-level model is:
Yo = Ty + € e ~N(@©.0?) [9.1]

for i0{12,...,n} persons per clustei,[1{1,2,...,d dlusters ank1{12,...,.K Jsites,

where 7, is the mean for clustgin sitek;

e, Is the error associated with each person; and

o? is the within-cluster variance.

The level-2 model, or cluster-level model, is:
i = Book + BoaW + o o ~ N(O,7,,) [9.2]
where B, is the mean for sitke
B 1S the treatment effect at ske

W, is a treatment contrast indicator, %2 for treatnaat -%2 for the control;
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ro; 1S the random effect associated with each cluatet;
T, is the variance between clusters within sites.
The level-3 model, or site-level model, is:
Boo = Vooo + Yoo var (Upy ) ~ 74,
Bow = Voro + Uox var (Upy) ~7g, COV(Ugok s Ugx) =T, [9.3]
where ),is the grand mean;
Yoio IS the average treatment effect (“main effecreftment”);
U,y IS the random effect associated with each sitenmea
U,y Is the random effect associated with each sitgrtrent effect;
7, is the variance between site means;
7, is the variance between sites on the treatmeettfind

7, is the covariance between site-specific meanssaeespecific treatment effects.

The random effects,, and u,, are typically assumed bivariate normal in distriduit
We are interested in two quantities, the main ¢fdéereatmenty,,,, and the variance of the
treatment effectr, . Note that we are operating under a random effeotdel. In a fixed effects
model, the variance of the treatment effegt, would be 0.

9.2 Testing the treatment effect

The average treatment effect is denotegrgsin level 3 of the model. Given a balanced

design, it is estimated by

}7010:?E_Yc [9.4]

where Ye is the mean for the experimental group afidis the mean for the control group.

Note that the estimated main effect of treatmeokddike that in the cluster randomized
trial except that now we are summing over cluséeid sites. Thus the variance of the treatment
effect is slightly different than in a cluster ramdized trial. It is estimated by (Raudenbush &
Liu, 2000)
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T, +A1,+0°In)/J
< .

The main difference between the variance of thatrinent effect in a multi-site cluster

Var(o) = 195

randomized trial and that in a cluster randomized is that we now have four sources of
variability, the within-cluster variancer?®, the between-cluster variance or within-site vare
7., the between-site variance, , and the between-site variance in the treatméectet; .

If the data are balanced, we can use the resu#tsiebted analysis of variance with

random effects for the clusters and sites and feféetts for the treatment. Similar to prior tests,

the test statistic is dn statistic. The= test follows a non-centréd distribution,F(1, K-1; A).
Recall that the noncentrality parameter is a ratithe squared-treatment effect to the variance
of the treatment effect estimate. Below is the eoi@lity parameter for the test.

A= yglo - Kyglo [9.6]

o + +0? '
var(y,,,) I, +41,+0°/n)/J

Recall that the larger the non-centrality parameter greater the power of the test. By
looking at the formula, we can see tKathe number of sites, has the greatest impact on the
power. It is especially important to have a lakgi there is a lot of between-site variance.
Increasing) also increases the power but is not as imporskit d becomes more important if
there is a lot of variability between clusters.dHy, increasingy does increase the power, but
has the smallest effect of the three sample simeseasingn is most beneficial if there is a lot of
variability within clusters. In addition ti§, J, andn, a larger effect size increases power. Note

thatr, , the between-site variance of the treatment efégears in the denominator of the non-

centrality parameter. As mentioned above, if theavee of the treatment effect across sites is
large, it is particularly important to have a largenber of sites to counteract the increase in
variance in order to achieve adequate power. Howéwhe variability of the impact across
sites is very large, the average treatment effest not be informative.

Thus far, we have focused on the unstandardizedbra effects model for a multi-site
cluster randomized trial. In a multi-site clustandomized trial, we need to think about the
standardized effect size and the effect size vaitiablrhe magnitude of the effect size

variability depends on the desired effect size.@@mple, an effect size variance of 0.10 is the

same as a standard error of approximatedyo =0.31. If a researcher desires a minimum
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detectable effect of 0.20, a standard error of 86ms too large and would indicate a lot of
uncertainty in the estimate. For an effect siz6.80, an effect size variance of 0.01 (or standard
error of 0.10) seems more reasonable. Sectionrszpts the standardized notation.
9.3 Standardized notation

In standardized notation, the non-centrality partame ,can be rewritten as:

Kyglol(r,,+az) _ Ko?
1, T, +0°INI(r,+0%) o +4p+A-p)/n]/d

[9.7]

where the intra-cluster correlatiop,, is:

T

—_ T

r, +o°’

or the variance between clusters relative to theden and within cluster variation within

blocks:; d is the standardized main effect of treatment,

S5= Yoio
T, +0°

and o} is the variance of the standardized treatment gffec

2 Tﬂn 5
0'5— -
T,T'*'U

9.4 Using a covariate to increase power

In addition to blocking, researchers may also rduster-level covariates available. The
cluster-level covariate in a multi-site randomizedl functions similarly to the cluster-level
covariate in a cluster randomized trial. Recalt thaeluding a cluster-level covariate influences
the power of the test depending on the strengtheotorrelation between the covariate and the

true cluster mean outcome, or how much of the taditiain the true cluster mean outcome is

explained by the covariate. The proportion of exyd variability is denote(pf% . The larger
,of,%, the smaller the conditional level 2 varianeg,, relative to the unconditional level 2

variance,7,, and the greater the benefit of the covariat@andasing precision and power.

9.5 The model with a cluster-level covariate

® The Optimal Design asks for slightly different aareters than those presented in the non-centpaligmeter in
equation 7. The Optimal Design asks to user toréheebetween cluster variance prior to blocking #re percent
of variance explained by blocking. It calculates garameters in equation 9.7 within the program.
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The level 1 model for a multi-site cluster randped trial with a cluster-level covariate
looks the same as the level-1 model for a regulati+site cluster randomized trial (see equation
9.1). The level 2 model looks slightly differentdagse it includes the cluster level covariate. It
IS written as:

Thj = Boo + IBOJijk + :802kxjk ok o ~ N (o} me) [9.8]

Note:7,,, = 1- 07, )T,
where S, is the adjusted mean for ske

B is the adjusted treatment effect at &ijte

B 1S the regression coefficient for the cluster-les@variate at sité;

W, is 0.5 for treatment and —0.5 for control;

X is the cluster level covariate, typically centetedave mean 0;
roi 1S the random effect associated with each cluates;
T, is the residual variance conditional on the clukeel covariateX , .

Note that the between cluster variance is now iduagvariance conditional on the cluster-level

covariate X, .

The level 3 model is now:

Box = Vooo * Yoo Ugox ~ N0, Tp00|x) [9.9]
Bow = Voio + Uox Uoe ~ N(O,754)
Box = Yoo

where y,,, is the grand mean;
Y010 IS the average treatment effect (“main effecrehtment”);
Yoo 1S the regression coefficient for the cluster-les@variate, which is assumed

constant across sites;

U,y IS the random effect associated with each sitenmea
U,y Is the random effect associated with each sitgrtrent effect;
7, x1S the residual variance between site means; and

Ty is the variance between sites on the treatmentteffe
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Because of the randomization, the true treatmdectef not influenced by the covariate.
Thus it is not necessary to have a conditionakevae for the between-site variation in the
treatment effect. Note that we are also fixingdlkerage regression coefficient for the cluster-
level covariate.
9.6 Testing the treatment effect (Including a clugr-level covariate)

The estimate of the main effect of the treatmenbanting for the cluster-level covariate

Voro=YeE=Yc= P Xe=Xc). [9.10]
In words, it is the mean difference adjusted fer titeatment group differences on the covariate.
To test the main effect of treatment we use arakssic which follows a non-centré&l
distribution, F LK -1, A,) where:

2
= Voo [9.11]
Ty tMTy+o" )1

X

This formula for the noncentrality parameter losksilar to the noncentrality parameter without
the covariate except that the estimate of thertreat effect is calculated differently and the
between cluster variance is now a conditional vexea
Following the same logic as the multi-site clustardomized trial with no covariate, we
can standardize the parameters. The non-centpaigmeter expressed in standardized notation
is:
Ko™

A = . 1 9.12
ol +4p "+ (- pY)/n|id [9:12]

where p the intra-cluster correlation,

T
. _ 7
p =—7,
T tO

or the conditional variance between clusters nataid the between and within cluster variation

within blocks: d” is the standardized main effect of treatment dosrehl on the covariate,

5 =_ Yo _;
T +O

and g7 is the variance of the standardized treatment eéfeaditional on the covariate,
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Because the conditional standardized quantitiadtieg from inclusion of a covariate
are frequently unknown, the program asks the wsenter the unconditional

parametersp, d,and ;. The program calculates the conditional standedizalues based on

the input.
9.7 Testing the variance of the treatment effect

Recall that in a fixed effects model we assumerdmtment effect to be homogeneous
across the sites. Thus the tests described isdieison are only applicable under the random
effects model where we assume the treatment etiadomly varies across the sites. To quantify
this difference, we estimate the variance of thattnent effect across the sites. The design, with
treatments randomized to clusters within sitesyadlus to estimate this variability. If it is very
large, it may be hiding the true treatment efféc. example, imagine a multi-site cluster
randomized trial that reports a treatment effed@.@B. The researchers claim that the new
reading program improves scores by 0.23 units. Wewehey fail to report that the standardized
treatment effect variability across sites is 0.B@e high variance suggests that some types of
schools benefit from the program while other typeschools actually suffer from the program.
For example, there may be a differential effectdmation, where rural schools that adopt the
program see positive effects but urban schoolsatiapt the program see negative effects. Thus
the researchers would need to investigate modgratia characteristics. Reporting the average
treatment effect alone may be very misleading ambt recommended.

Because the variance of the treatment effecttisarin determining the interpretation of
a treatment effect estimate, it is important tabke to detect the treatment effect variabilityhwit
adequate power. The remainder of this section desschow to calculate the power for the
variance of the treatment effect using standardimeetion.

The null and alternative tests for the treatmdietce variability are:

H,:02=0

H,:0%>0.
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The null hypothesis states that the variance ofrregment impact across sites is 0, whereas the
alternative hypothesis states that it is great&n th The test for the variance of the treatment
effect is arF test. The= statistic (Raudenbush & Liu, 2000):

G°
Tg +MT,+—)1
_ n
Fe _ _ [9.13]

at +7)13
n

Note that the average effect size is not a pattt@talculation, thus the power is based on the
number of sitesK, the number of clusters per sifethe number of people per clusterthe

effect size variabilitys, and the intra-cluster correlatiop, TheF statistic follows a centrat
distribution with df =K-1, K(J-2). The ratio of the expectation of the numeraiahe
expectation of the denominator, in standardizedtrant, is

N Jo?
Ap+@-p)/n’

Under the null hypothesis, we expexfto be 0, thue =1. As ¢ increasess gets larger,

[9.14]

increasing the power of the test. Thus the numbelusters within each site is critical for
increasing the power to detect the variance ofregment effect across sites. As the number of
clusters within each site increases, so does thepm detect the variability of treatment effects.
IncreasingK also increases the power, through the degreeseddm, but is not as important as
increasingl. Note that this is the opposite of what we foumthie case of power for the
treatment effect, whet¢ is the most significant factor in increasing powedJ is less
important.

Looking at equation 9.14, we can see that it welldifficult to achieve adequate power to

detect small values of?, like 0.01 unlesd is extremely large, which is unlikely. This is reot

major problem because our primary concern is talbe to detect larger treatment effect
variability since small values will not influendeet interpretation of the treatment effect.
9.8 The fixed effects model

The fixed effects model is identical to the randeffiects model with a crucial exception:

the site-specific contributions,, and u,, are designated as fixed constants rather than nando

variables.
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The level-1 and level-2 models are identical toagiquns 9.1 and 9.2 in the random

effects case. The level-3 model, or site-level nhasde
Boo = Vooo + Yoo

Bow = Voo + Uox [9.15]

where y,,is the grand mean;
Yo10lS the average treatment effect (“main effect edtment”);

Uy » Tor kO {12,...,K}, are fixed effects associated with each site meamstrained to

have a mean of zero; and

Uy, for kO{12,...,K}, are fixed effects associated with each treatrbgrdite

interaction, constrained to have a mean of zero.

We are interested in two kinds of quantities, tremeffect of treatmeny,,,, and the
fixed treatment-by-site interaction effeatg, , for k(1 {1,2,...,K}.

9.9 Testing the average treatment effect

We can use the results of a nested analysis @nag with random effects for the
clusters and fixed effects for sites, treatmenmid, site-by-treatment interaction. Similar to prior
tests, the test statistic is Brstatistic. Thd- test follows a non-centr& distribution,F(1, K(J-

2); A). Recall that the noncentrality parameter is aratithe squared-treatment effect to the
variance of the treatment effect estimate. Belothhésnoncentrality parameter for the test.

2
_% . [9.16]
Recall that the larger the non-centrality parameter greater the power of the test. By
looking at the formula, we can see tKat the total number of clusters, has the greatesteémpa
on the power. Finally, increasimgdoes increase the power, but has the smallest eff¢he
three sample sizes. Increasmg most beneficial if there is a lot of variabyjlivithin clusters. In
addition toK, J, andn, a larger effect size increases power. Note thbiteithe case of the

random effects model, , the variance of the treatment effect, does npeapin the

denominator of the non-centrality parameter. HowgWé¢he variation of the treatment effects
across sites is large, the average treatment effagtnot be informative because it may not

characterize the treatment effect in any given Sleetion 9.10 discusses the test of the variation
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site by treatment effect variation under the fixedi@cts model. If the treatment effects vary
across sites with a fixed effects model, the méfeceof treatment is interpreted with great
caution.

In the fixed effects standardized model, the namivedity parameterd can be rewritten
in terms of the standardized model:

_ Ko
Hp+Q-p)/n]

where p is the intra-cluster correlation ,

(see footnote 5) [9.17]

T

—_ T

r,+o?’

or the variance between clusters relative to theden and within cluster variation within

blocks; andd is the standardized main effect of treatment,

0= Yoo :
T, +0°
9.10 Testing site-by-treatment variation in the cotext of a fixed effects model.
Operationally, the test of the site-by-treatmeariation in the case of the fixed effects
model is identical to that in the case of the randdfects model (see Section 6.6 “Testing the
Variance of the Treatment Effect”). The null hylpesis, however, differs. Recall that in the
case of the random effects model we test
Hy:7p,=0
or for the standardized random effects model, \st te
A, :05=0.
However, in the fixed effect model, the site-sfiedreatment effects are fixed constants
rather than random variables. Thus we have, imtimestandardized model
K
Ho D uy =0.
-

1

As in the random effects case, we test this hysishesing
F[K _1' K(J _2)] = MS treatmentsby site )

MS within cell
When theF test indicates rejection dfl ,, one emphasizes the estimation of site-specific
treatment effects (also known as “simple main e$fee see Kirk (1982), p. 365) or post hoc
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procedures designed to identify subsets of sitew/lfiich the treatment effect is homogeneous
(see Kirk (1982), p. 317).
9.11 Using Optimal Design for the multi-site clusterandomized trials (MSCRT)

The menu for the MSCRT is shown below and carobed by clicking on the following:
Design—> Cluster randomized trials with person level outesr» Multi-site (or blocked)
cluster randomized trial® Treatment at level 2. In this chapter we focugomtinuous
outcomes thus the first two options are shown below
Power on y-axis (continuous outcomes)

Power vs. cluster size)(

Power vs. number of siteK)

Power vs.
Power vs.
Power vs.
Power vs.

Power vs.

number of clusters per site (
intraclass correlatigs) (
effect size (delta)

effect size variability

proportion of explained variation bydetwo covariate (R2)

MDES on y-axis (continuous outcomes)
MDES vs.
MDES vs.
MDES vs.
MDES vs.
MDES vs.
MDES vs.
MDES vs.

cluster sizen

number of siteK}

number of cluster per sit® (
intraclass correlatiop)(
powerk)

effect size variability

proportion of explained variation by letwo covariate (R2)

The first set of options present the power on tHaig and either the cluster size, number of
clusters per site, number of sites, interclassetation, effect size, effect size variability, or
proportion of explained variation by level-2 cowde to vary on the x-axis. The second set of
options present the MDES on the y-axis and eitheictuster size, number of clusters per site,
number of sites, intraclass correlation, powerdfsize variability, or proportion of explained

variation by level-2 covariate to vary on the xsaXlVe present an example below and guide the
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user through the steps for approaching the exawiplide power determination approach or the
effect size approach.
9.12 Example

Suppose a team of researchers develop a new litpragram. The founders of the new
program propose that students who participatearptbgram will have increased reading
achievement. They propose a three-level designstittients nested within schools within
districts and they want to block by district. Thgtwithin each district, half of the schools will
be randomly assigned to the new program and hatfe@urrent program. They plan to test
students who are in classrooms that participateadmew program (experimental group) and
students who are in classrooms that participatbdamegular program (control group) in each of
the schools using a reading test to determineidesits using the new program score higher.
9.13 Power determination approach for conducting @ower analysis

Based on past studies, the researchers expect 2bpeatrcent of the variation in the
outcome to be between schools (prior to blockiBg)blocking on district, the researchers
expect to explain 40% of the variation in the ounteovariable. They are interested in detecting
an effect size of at least 0.25 with adequate poAssuming that they plan to test 200 students
per school and have secured 10 schools per djstdet many districts (sites) are necessary to
achieve power = 0.80? Assume the researcherstaresited in generalizing to a broader
population of districts thus they treat the didfrias random effects and assume an effect size
variability of 0.01. Suppose the researchers haeess to a school level pre-test that explain
about 49% of the variation in post-test scores. Huamy districts are required after including
the school-level covariate?

In Scenario 1, the number of sit&s,is unknown. As a result, we want to select the
power vs. number of siteK) option. This allows the number of sites to vaigng the x-axis.
The steps for conducting the power analysis follow.

Step 1: Select Desige» Cluster randomized trials with person level outesr» Multi-site (or
blocked) cluster randomized trials Treatment at level 2 Power on for treatment effect on y-

axis (continuous outcomey Power vs. number of siteK)as shown in Figure 9.1.
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Figure 9.1. Initial screen for cluster randomized trials witlocking.

The toolbar at the top includes the parametersiredjfor calculating the power: sample size
within cluster (n), number of clusters per silg éffect size §), effect size variability ),

intraclass correlationp), percent of variance explained by blocking, @)d explained
proportion of variance by covariate (R). The numifesites K) does not appear on the toolbar
because it varies along the x-axis.

Step 2: Click on n. Set n(1) = 200. By clickingmfi) = 200, the default power curves appear.
However, we must first set the additional paransetematch the values in the particular
example before we interpret the curves.

Step 3: Click onl. SetJ(1) = 10. This is the number of schools per distric

Step 4: Click ord. Set delta (1) = 0.25.

Step 5: Click ono;. Set sigma2d = 0.01. Setting the effect size bty greater than 0

assumes random site effects.
Step 6: Click orp. Set rho (1) = 0.25.
Step 7: Click on B. Set B(1) = 0.40. This defines percent of variance explained by blocking

on district. The resulting power curve appearsigufe 9.2.
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Figure 9.2.Power curve.

Clicking along the power curve, we can see thatfiicts are required for the study. Within
each district, we randomly assign 5 schools targgtment condition and 5 schools to the
control condition. Let’s see what happens whenmnetide the school-level covariate.

Step 8: Click on R. Set R2 — 2 equal to 0.49. Twwér curves appear as shown in Figure 9.3.

 Optimal Design =10 x|
Ele Design Hep
- 3-level MSCRT(treatment effect) - Power =[Ol x|

aln|1]8]sip|Blsfodes] Leselw]afs]x]

~—ezoT

@

" 14 7 20

Number of sites

Figure 9.3. Power curves.
According to the key, the dotted trajectory is plosver curve when the covariate is included. In
this case, approximately 8 districts are neededdaction of 4 districts and 40 schools, which

may greatly reduce the cost of the study.
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If we were not interested in generalizing to géarpopulation of districts, we could

consider the districts as fixed effects. In thisegave would setr; = 0.

Lol
Fle Design Working Help

TE
a|n|7|8]cllp|Blraloclss| Lz]velom| &[] x]

—ozo0m

6 3 12 15 18

Total number of sites Curves with G? setto 0.0 are
curves for the fixed effects model.

Figure 9.4 Fixed effects power curve.
Clicking on the curve reveals that 5 or 8 siteshwind without a covariate, are required for
power = 0.80. The number of required sites deceaben the sites are treated as fixed effects.

The example provided in this section placed thalmer of districts on the x-axis.
However, any of the other parameters could be glacethe x-axis and the steps could easily be
adapted to conduct the power analysis.
9.14 Effect size approach for conducting a power atysis

Based on past studies, the researchers expect 2bpeatcent of the variation in the
outcome to be between schools (prior to blockiBg)blocking on district, the researchers
expect to explain 40% of the variation in the onteovariable. The researchers have secured 8
districts (sites), 10 schools per district, and &@@lents per school. What is the MDES? Assume
the researchers are interested in generalizingptoader population of districts thus they treat
the districts as random effects and assume anteitezvariability of 0.01. Suppose the
researchers have access to a school level prirtgstxplain about 49% of the variation in post-
test scores. What is the MDES after including thxeaciate?

In Scenario 2, the MDES is unknown so it makes nserese to select an option with the
MDES on the y-axis. One option is to select MDEStetal number of siteK(. This allows the

user to see how the MDES changes as a functidmegbawer holding all other parameters
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constant. Using this approach is very useful bst abquires that after the MDES is determined,
the researcher consult the literature or findimgaifa pilot study to determine if the MDES is
reasonable. The steps for conducting the powewysisdbllow.

Step 1: Select Desige» Cluster randomized trials with person level outes» Multi-site (or
blocked) cluster randomized trials Treatment at level 2 MDES for treatment effect on y-

axis (continuous outcomey MDES vs. total number of site)as shown in Figure 9.5.

» Dptimal Design (=] ]
Fle Design Working Help
- 3-level MSCRT{treatment eff: =1

afn|T[P [ai| p[Brd s o] nefon] @ [a] X]

Figure 9.5.Initial blank screen of MDESs. total number of siteK]

Step 2: Click on n. Set n(1) = 200. By clickingmfi) = 200, the default power curves appear.
However, we must first set the additional paransetematch the values in the particular
example before we interpret the curves.

Step 3: Click onl. SetJ (1) = 10.

Step 4: Click orP. SetP (1) = 0.80.

Step 5: Click ong. Set sigma = 0.01

Step 6:. Click orp. Setp=0.25.
Step 7: Click on B. Set B = 0.40. The resulting powsurve appears in Figure 9.6.
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Figure 9.6. Power curve with specified parameters.

Clicking along the trajectory we can see that for B, the MDES is approximately 0.32. If the
literature suggests that an effect size of 0.26ase likely, clicking along the curve for an effect
size of 0.25 reveals that the study will need i@ssilLet’'s see what happens when we add a
cluster-level covariate.

Step 8: Click on R. Set R — 2 = 0.49. Figure 9spldiys the two power curves.

» Optimal Design =10l x|
Bie Design working Help
. 3-level MSCRT(treatment effect) - Minimum de 1Ol x|

afn|T[P [ai| p[Brd s o] nefon] @ [a] X]

o= 0050
n=200
04+ J=10

P=10.60,p= 025520010, B=0.40

— — = 01.80,0= 025,520 010,B=0.40, A2,

0 0@
o
w
I

@ -

8 " 14 17 20

MNumber of sites

Figure 9.7. Power curve with covariate.
Clicking along the dotted trajectory, the MDES with= 8 is 0.24, reducing the MDES by 0.07
effect size units.

9.15 Power for effect size variability
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Thus far we have focused on power calculationghfertreatment effect in a random
effects model. Researchers may also be interestix ipower for effect size variability. Recall
that if the effect size variability is large, thhedtment effect may be meaningless and it is
important to investigate moderating effects to akpthe variability in effect sizes. As a result, i
is important to be able to detect the effect seeability with adequate power. For example,
recall the literacy program. The researchers pmposiocked design with students nested within
schools which are blocked by district. They exg@edtstricts, 10 schools per district, and 200
students per school. They expect blocking to erpd@i% of the variability in the outcome. They
plan to test students who are in schools thatgypatie in the regular program (control group)
and students who are in classrooms that participatee new program (experimental group) in
each of the participating schools using a readasy They want to know the power to detect the
variability in the effect sizes across sites. Assighan intraclass correlation of 0.25 and
explained variation by covariate of 0.49, what pode the researchers have to detect an effect
size variability of 0.017? of 0.05?

Step 1: Select Desige» Cluster randomized trials with person level outese» Multi-site (or
blocked) cluster randomized trials Treatment at level 2 Power for effect size variability on
y-axis (continuous outcomey Power vs. effect size variability. The blank sorésin Figure
9.8.

=[O
Fle Desgn Working Help

ISCRT(effect si =10l x|
aln|1[K|p[B|n|s]ud  |2|uelm|a]s|X]

Figure 9.8.Initial blank screen for power vs. effect size.
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The primary difference on the toolbar is that thisreo effect sizej, because the effect size is
not a part of the calculation.

Step 2: Click on n. Set n(1) = 200.

Step 3: Click onl. SetJ(1) = 10.

Step 4: Click orK. SetK(1) = 8.

Step 5: Click omp. Set rho (1) = 0.25.

Step 6: Click on B. Set B = 0.40.

Step 7: Click on R. Set R = 0.49. The final curaesin Figure 9.9.

~oix
Fle Design Help

HEE
aln|7[K|p|B|nfoe| ke|rl=]a[w]x|

a=0.050
n=200
J=10
K=8

p=0.25B=0.40

- 0,25 B= 2
— —pr 025 B=040 R, 0.40

—eso0T

rTTr T T T T T T T T T T T T 7T 1T T T
0.08 on 0.14 0.17 020

Effect size variability

Figure 9.9 Power to detect an effect size with variability.
Figure 9.9 reveals that the power to detect arceffize variability of 0.01 is less than 0.05. We
can change the scale of the x-axis to get the gaer.

Step 8: Click on <X<. Set minimum = 0.001. The mawves are in Figure 9.10.
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» Optimal Design

Fle Design Help

a|n|J|K|p|B|n o] 1e]ee]=] &) X|

1.0 4

0.9 -
08 -~
0.7+ e

a=0.050
n=200
J=10
K=8

p=0.25B=0.40

- 0,25 B= 2
— —pr 025 B=040 R, 0.40

0.8 /

~nzoD
L
™~

0.4+

0.3 /
2] 7

rTTr T T T T T T T T T T T T 7T 1T T T
0.04 0.08 012 0.18 020

Effect size variability

Figure 9.10. Power curve.

Clicking along the dotted trajectory reveals powkapproximately 0.12 for an effect size
variability of 0.01. Although the power is very dind is not particularly problematic because
an effect size variability of 0.01 is so smallgtunlikely to change the meaning of the treatment
effect. The power to detect an effect size vanghdf 0.10 is about 0.77, which is much higher

and important because an effect size variabilit.@D could mask the true treatment effect.
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10.0 Multi-site cluster randomized trials (4 leveMSCRT)

A trial with 4 levels in which level 4 representtetblocks or sites can be thought of as a
multi-site cluster randomized trials with 4 levefar example, suppose that students are nested
within classrooms, nested within schools, nestediwidistricts. Within each district, the schools
are randomly assigned to either the treatment wirab In other words, the districts are blocks
so this is a multisite cluster randomized trialhnat total of four levels. This chapter focuses on
power for the treatment effect. We distinguish lestw fixed and random site effects and begin
with the models for treating sites as random es$fe&tthough the variance of the treatment effect
is important, the tests for this are not includethis chapter or in the current version of Optimal
Design.
10.1The model (assuming random site effects)

Data from a four-level multi-site cluster randoedzrial can be written as a four level
hierarchical model. The level-1 model is:

Yin = Tl + € € ~ N 0,0%) [10.1]
for i0{L2,...,n} persons per classroom[1{12,...,J c}jassrooms per schod,1{12,...,K}
schools per site, and1{12,...,.L gites,
where 7, is the mean for classroonmn schook in sitel;

€. IS the error associated with each person; and

o’ is the within-classroom variance.

The level-2 model is:
ankI = :Boom + rOjkI rOjkI ~N (0, Tn) [10-2]
where [, is the mean for schoélin sitel;

i 1S the random effect associated with each classyand

T, is the variance between classrooms within schools.

The level-3 model with a school-level covariate is:

Booa = Yooa + VoosWooa + Uoow Ugga ~ N(0,7,4) [10.3]
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where J,,, is the mean for school [;
Yooa 1S the treatment effect at school |;

W, is the indicator variable where -1/2 representsctirerol group and ¥z represents the

treatment group;

Uyeq IS the random effect associated with school; and
rﬁis the variance between schools within sites.

The level-4 model is:

Yooa = Toooo  Sooa var,) ~N(@©,7

)
- ; Y000 104
Voo1 = Too10 ™ Sooa var@,;) ~ N, Tyon) | |

where 77,,4.1S the grand mean;

Noo1o!S the average treatment effect;

SoolS the random effect associated with each site mean

So:1S the random effect associated with each sitértreat effect;

T,0001S the variance between site means;

T,.,,iS the variance between sites on the treatmentteed

T,001iS the covariance between site-specific means gdgecific treatment effects.
The two quantities of interest are the main eftédteatmenty,,,,, and the variance between
the sites on the treatment effecy,,,. The variance of the treatment effect functiomsilsirly to

the case of the three-level multi-site cluster manited trial and is not discussed here.
10.2Testing the treatment effect
Given a balanced design, the average treatmesttesf estimated by:

Mooro=Ye=Yc [10.5]
where Ye is the mean for the experimental group ahdis the mean for the control group.

The variance of the treatment effect is approxifgate

s T, +41,+|(r,+0%In)/J|/K
Var(75,0) = = {ﬁ [ L J } [10.6]
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If the data are balanced, we can use the resu#tsiebted analysis of variance with
random effects for the classrooms, schools, aed,siind fixed effects for the treatment. The test
statistic is an F statistic. When the null hypoibésfalse, the F statistic follows the non-cehtra

F distribution, F(1L-2; A). The non-centrality parameter is shown below:

2
= S/Toono_ . [10.7]
Tyt Mr, +(1,+0°/n)/J)/K)

Recall that the greater the non-centrality param#éte greater the power of the test. From
equation 6.7, it is clear that the number of dites the greatest affect on the non-centrality
parameter followed by the number of schools, ctassis, and finally students.
10.3Standardized notation

In the standardized model, the between-site vagismoeemoved and the sum of the level-
one, level-two, and level-three variances is sdt t8imilar to the three-level cluster randomized

trial, there are two ICC’'sp,,.pand P,z - The first ICC, g...p, COrresponds to the between-

: . . , T
classroom variance relative to the between andmsthool variancep,, ., = g

——.
I,+I5 +0
The second ICCp,,.s, COrresponds to the between-school variance velédi the between and

T

within school variancep,, ., = —ﬂz. The standardized main effect of treatméntis
I, +I,+0
J= Momo , and the variance of the standardized treatméatteb?, is
T +T, +0°
4 . .
ol =$2. The non-centrality parametet, can be rewritten as:
I, +1,+0
Loz
A 2010 ° [10.8]

002' + 4{plevel3 + [plevelz + (l_pleveB _pleveIZ / n)/J]/ K} .
10.4The model with a level-3 covariate
The level-1 and level-2 models remain the samenwte add a level-3 covariate. The

level-3 model with a school-level covariate is:

® The Optimal Design asks for slightly different aareters than those presented in the non-centpaligmeter. The
Optimal Design asks the user to enter the varianogponents prior to blocking and the percent ofarare
explained by blocking and calculates the paramédterthe noncentrality parameter within the program
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Booa = Yooa + YooaWoou * Yooa Soon * oo Ugoq ~ N (0,74,) [10.9]
r.5|s = (1_p32ﬂ00k)r.5
where J,,, Is the mean for school [;
Yooa IS the treatment effect at school |;

Yooz 1S the regression coefficient for the school-les@Variate, which is assumed

constant across sites;

W, is the indicator variable where -1/2 representsctirerol group and ¥ represents the

treatment group;

Uy IS the random effect associated with school;

Py, 1S the correlation between the school-level coteréad the school-level mean;
I,is the variance between schools within sites; and

T4sis the variance between schools within sites cooit on the school-level covariate.

The level-4 model is:

Yooa ="Toooot Sooa var(Sy,,) ~ N(O, 7

)
_ ) Y000 10.10
Yoo _,70010 So1 varSy;) ~ NG, Tyon) | ]
Yooa = oo2o

where 77,,4.1S the grand mean;
Noo1olS the average treatment effect;
Nooz0lS the average effect of the regression coefficient
SoolS the random effect associated with each site mean
So.1S the random effect associated with each sitérnreat effect;
T,0001S the variance between site means;
T,11,1S the variance between sites on the treatmenttetied
T,00:1S the covariance between site-specific means iedgecific treatment effects.

10.5Testing the treatment effect (including a leved covariate)

The average treatment effect is estimated by:

104



A

’70010=YE_?C_’70020(SE_SC) [10-11]

where Ye is the mean for the experimental group:;
Yc is the mean for the control group;

Sk is the covariate mean for the experimental groug; a

Sc is the covariate mean for the control group.

If the data are balanced, we can use the resu#tsiebted analysis of variance with
random effects for the classrooms, schools, aed,siind fixed effects for the treatment. The test

statistic is an F statistic. When the null hypoibésfalse, the F statistic follows the non-cehtra

F distribution, F(1L-1; A,). The non-centrality parameter is shown below:

= L o0 . [10.12]
YT tAMT e + (T, + 07 IN)]J)/K)

We can rewrite 10.12 in standardized notation Hevis:

L 3010

A= ——f——F= : ; T [10.13]
) 0.62 + 4{plevel3 + |-pleveI2 + (1_ plevela - plevelz / n) / JJ/ K}
* T - -, .
where p ~=——"——1is the conditional level two ICC;
level2 T” + Tﬁls + 0—
* T - -, .
yo :%ls the conditional level three ICC;
level3 T,-[ + Tﬁls + 0—
o = oo is the standardized main effect of treatment caoomtl on the
NS o Y
covariate; and
* T - - - -, .
oy =——*—is the variance of the standardized treatment etfecditional on
[, +Tg +0

the covariate.
10.6 The fixed effects model
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The fixed effects model is the same as the ranelidect model except that the site-

specific effects are fixed constants instead ofloam variables. The new level-4 model is:

Yooa =1T0000 t Sooa
Yoo1 =Too10t Sooa [10.14]

Vooa = ooz

where 7,,40iS the grand mean;
Noo1olS the average treatment effect;
Nooz0lS the average effect of the regression coefficient
Swq » are fixed effects associated with each site meamstrained to have a mean of zero;

and
Swoa are fixed effects associated with each site treatraffect, constrained to have a

mean of zero.
Similar to the three-level multi-site cluster rantized trial, the main effect of treatment,

Noo1o» @nd the fixed treatment-by-site interaction effes;,, , are of primary interest.

10.7 Testing the average treatment effect
If the data are balanced, we can use the resu#tsiebted analysis of variance with

random effects for the classrooms and schoolsiaed &ffects for sites, treatments, and site-by-
treatment interaction. Similar to prior tests, thst statistic is aR statistic. The- test follows a
non-centraF distribution,F(1, L(K-2); A). Recall that the non-centrality parameter is & ratt

the squared-treatment effect to the variance ofrement effect estimate. Below is the non-

centrality parameter for the test in standardizettion without a school-level covariate:

2
A= L %010 (see footnote 6) [10.15]
4{10Ievel3 + [plevelz + (1_ Iolevel3 - Iolevelz / n) / J]/ K}
where p = #2 is the variance between clusters relative to #tevben and within

level2 - Tn- + T‘B + 0—

school variation within;

r , . , o
p, . =—————— is the variance between schools relative to theden and within
R S PR N

school variation within blocks; and
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J = LT

is the standardized main effect of treatment.
\/ T,+T; +0°

Adjusting for the covariate reveals:

Lo
A= 1= - - 1 [10.16]
4{plevel3 + |-plevel2 + (1_ pleveB B plevelz /n) / J]/ K}
where p = #2 is the variance between clusters relative to #teveen and within
level2 Tﬂ + Tﬁs + g

school variation within blocks conditional on theheol-level covariate, S;

. r . , . L
p. =——7>" s the variance between schools relative to tierden and within
evel T” + Tﬁls + 0—

school variation within blocks conditional on threheol-level covariate, S; and

o = o010
[ 2
T, + Tps +0

school-level covariate, S.

is the standardized main effect of treatment domahl on the

Note that unlike the case of the random effectsehoq, the variance of the treatment effect,

does not appear in the denominator of the non-agkiytparameter. However, as in the case of
the random effects model, if the variation of treatment effects across sites is large, the
average treatment effect may not be informative.

10.8 Using Optimal Design for multisite cluster radomized trials (4 level model)

The menu for the MSCRT with treatment at leves3hown below and can be found by
clicking on the following: Desigr> Cluster randomized trials with person level outesr»
Multi-site (or blocked) cluster randomized triads Treatment at level 3.

Power for treatment effect on y-axis

Power vs. cluster siza)(

Power vs. number of clusters per schddl (

Power vs. number of schools per sk (

Power vs. total number of sitds) (

Power vs. effect size (delta)

Power vs. proportion of explained variation bydetwo covariate (R2)

MDES fr treatment effect on y-axis

107



MDES vs. cluster sizen]

MDES vs. number of clusters per schabl (

MDES vs. number of schools per sik (

MDES vs. total number of sitek)(

MDES vs. powerK)

MDES vs. proportion of explained variation by let®o covariate (R2)
The first set of options present the power on Haig and the second set of options presents the
MDES on the y-axis. We present an example belowgande the user through the steps for
approaching the example via the power determinatpproach or the effect size approach.
10.9 Example

Suppose a team of researchers develop a new litpragram. The founders of the new
program propose that students who participateerptbgram will have increased reading
achievement. They propose a four-level design sititldents nested within classrooms within
schools within districts and they want to blockdistrict. That is, within each district, half ofeh
schools will be randomly assigned to the new pnogaad half to the current program. They
plan to test students who are in classrooms théitymate in the new program (experimental
group) and students who are in classrooms thatjpate in the regular program (control group)
in each of the schools using a reading test tarehéte if students using the new program score
higher.
10.10 Power determination approach for conducting @ower analysis

Based on past studies, the researchers expect 2b@eatrcent of the variation in the
outcome to be between schools and 10 percent betideeen classrooms within schools (prior to
blocking). By blocking on district, the researchexpect to explain 40% of the variation in the
outcome variable. They are interested in deteamgffect size of at least 0.25 with adequate
power. Assuming that they plan to test 20 studpetslassrooms and have secured 8 classrooms
per school and 8 schools per district, how maniyidis (sites) are necessary to achieve power =
0.80? Assume the researchers are interested imajieime to a broader population of districts
thus they treat the districts as random effectsaamstime an effect size variability of 0.01.
Suppose the researchers have access to a schelghleutest that explain about 49% of the
variation in post-test scores. How many districesraquired after including the school-level

covariate?
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In Scenario 1, the number of sitésjs unknown. As a result, we want to select the
power vs. number of sitek)(option. This allows the number of sites to vaiong the x-axis.
The steps for conducting the power analysis follow.

Step 1: Select Desige» Cluster randomized trials with person level outesm» Multi-site (or
blocked) cluster randomized trials Treatment at level & Power on for treatment effect on y-

axis—> Power vs. number of sitek)(as shown in Figure 10.1.

i
Fle Design Working Help

RI-IET
|07 [K| 5| B|oileh|s sl  kz[ue]we @ o] X]

Figure 10.1.Initial screen for power vs. number of site%.

The toolbar at the top includes the parametersired|or calculating the power. The number of
sites () does not appear on the toolbar because it valoeg) the x-axis.

Step 2: Click on n. Set n(1) = 20. By clicking oiin= 20, the default power curves appear.
However, we must first set the additional paransetematch the values in the particular
example before we interpret the curves.

Step 3: Click onl. SetJ(1) = 8. This is the number of classrooms per sthoo

Step 4: Click orK. SetK(1) = 8. The is the number of schools per district.

Step 5: Click ord. Set delta (1) = 0.25.

Step 6: Click on B. Set B(1) = 0.40. This defines percent of variance explained by blocking
on district.

Step 7: Click ono;. Set sigma2d = 0.01. Setting the effect size wity greater than 0

assumes random site effects.
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Step 6: Click on set. Sef = 010and 7, = 020. This sets the variance components at level 2

and 3.

The resulting power curve appears in Figure 10.2.
=Ioix
-l1

|7 |%] 5| Bwif[sefsclss]  Le|vele| &[] ]
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—eso0T
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Total number of sites

Figure 10.2.Power curve.

Clicking along the power curve, we can see thadite® or districts are required for the study.
Within each district, we randomly assign 4 schdolthe treatment condition and 4 schools to
the control condition. Let’s see what happens wiliennclude the school-level covariate.

Step 8: Click on R. Set R2 — 2 equal to 0.49. Twwér curves appear as shown in Figure 10.3.

» Optimal Design =18l x|
Fle Design Working Help
. 4-level MSCRT - Power vs. number of sites (L) =13l x|

@|n|7|%|5|B| o[ |se[slen|  Lz]ve]w]| &[] x|

—eso0T
I

13 24 35 48 7

Total number of sites

Figure 10.3 Two power curves.
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According to the key, the dotted trajectory is plosver curve when the covariate is included. In
this case, approximately 8 districts are neededdaction of 4 districts and 40 schools, which
may greatly reduce the cost of the study.

If we were not interested in generalizing to géarpopulation of districts, we could

consider the districts as fixed effects. In thisecave would setz= 0 as shown in Figure 10.4.

Lol
Fle Design Working Help

TE
a|n|7|8]cllp|Blraloclss| Lz]velom| &[] x]

—ozo0m

6 3 12 15 18

Total number of sites Curves with G? setto 0.0 are
curves for the fixed effects model.

Figure 10.4 Power curve with fixed effects.
Clicking on the curve reveals that 10 sites, witld svithout a covariate, are required for power =
0.80.

The example provided in this section placed thalmer of districts on the x-axis.
However, any of the other parameters could be dlacethe x-axis and the steps could easily be
adapted to conduct the power analysis.

10.11 Effect size approach for conducting a powemalysis

Based on past studies, the researchers expect 2b@etrcent of the variation in the
outcome to be between schools and 10 percent betideeen classrooms within schools (prior to
blocking). By blocking on district, the researchexpect to explain 40% of the variation in the
outcome variable. They are interested in detecmgffect size of at least 0.25 with adequate
power. Assuming that they plan to test 20 studpatxlassrooms and have secured 8 classrooms
per school, 8 schools per district, and 10 digriathat is the MDES for power = 0.80? Assume
the researchers are interested in generalizingotoader population of districts thus they treat

the districts as random effects and assume anteitez variability of 0.01. Suppose the
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researchers have access to a school level prirtgsxplain about 49% of the variation in post-
test scores. What is the MDES after including threaciate?

In Scenario 2, the MDES is unknown so it makes nserese to select an option with the
MDES on the y-axis. One option is to select MDEStotal number of sited J. This allows the
user to see how the MDES changes as a functidmegbdwer holding all other parameters
constant. Using this approach is very useful bst abquires that after the MDES is determined,
the researcher consult the literature or findimgaifa pilot study to determine if the MDES is
reasonable. The steps for conducting the powewysisdbllow.

Step 1: Select Desige» Cluster randomized trials with person level outesr» Multi-site (or
blocked) cluster randomized trials Treatment at level & MDES for treatment effect on y-

axis> MDES vs. total number of sitek)(as shown in Figure 10.5.

» Dptimal Design =10l x|
Bie Design working Help
. d-level MSCRT - Minimun I [

o|n|7[& [P |Bai|rd|se[sses] o] nsfon] @ [os] X]

Figure 10.5 Initial screen for multi-site cluster randomizedls.

Step 2: Click on n. Set n(1) = 200. By clickingmfi) = 200, the default power curves appear.
However, we must first set the additional paransetematch the values in the particular
example before we interpret the curves.

Step 3: Click onl. SetJ(1) = 8. This is the number of classrooms per sthoo

Step 4: Click orK. SetK(1) = 8. This is the number of schools per district

Step 4: Click orP. SetP = 0.80.

Step 5: Click on B. Set B(1) = 0.40. This defines percent of variance explained by blocking

on district.
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Step 6: Click ono. Set sigma= 0.01. Setting the effect size variability greatean 0 assumes

random site effects.

Step 7: Click on set. Sef = 010and 7, = 020. This sets the variance components at level 2

and 3. The resulting curve is in Figure 10.6.

» Optimal Design 1Ol x|
File Design Help
: 4-level MSCRT - Minimum detectable e -0l x|

t[n[3 [R|P [Blot|s|ee[srfssd] kvl &[se]x]

109 @ =0.050

n=200

K=28
0.8 p_=0.100

pg= 0.200

F= 0.80,62=0.010,B=0.4D

LI B —

13 24 35 45 57

Total number of sites

Figure 10.6 Power curve.

Clicking along the trajectory we can see that fodistricts, the MDES is approximately 0.28.
Let's see what happens when we add a cluster-tewariate.

Step 8: Click on R. Set R — 2 = 0.49. Figure 1Gspldys the two power curves.
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File Design Help
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0] 3 [K[P [Blotfs|ca[sifesq]  Le[weloe] @ [on]X]
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Figure 10.7. Power curve with cluster-level covariate.
Clicking along the dotted trajectory, the MDES wabwer = 0.80 is 0.23, reducing the MDES
by 0.05 effect size units.

Another option is to treat the sites as fixed effeBy clicking ono-and setting it to 0,

the sites are assumed to be fixed effects. Fighu& displays the power for this case.
=TE

File Design Help
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13 24 35 45 57

Total number of sites Curves with Gé setto 0.0 are
curves for the fixed effects model.
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Figure 10.8.Power curve with fixed effects.
The MDES reduces to 0.24 and 0.19, without and thighcovariate. However, the
generalizability also changes which is not a diaikissue but very important in terms of the

study design.
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11.0 Cluster randomized trials with repeated measuws

In a typical longitudinal study, an observatiomasorded prior to treatment, often
referred to as the baseline measurement, and ftegrilee treatment a pre-determined number of
times. Measuring participants prior to treatmertt past-treatment allows the researchers to
assess individual growth. Individual growth maypbetted via a straight line or a curvilinear
trajectory. A linear trajectory, or first degredymomial, is characterized by an intercept and a
linear rate of change, or slope. Curvilinear tregges are second, third, or higher degree
polynomials. A second degree polynomial, also knawm quadratic polynomial, adds an
acceleration parameter to the intercept and rathafge. A third degree polynomial, also
known as a cubic polynomial, is characterized Imarameters, change in acceleration, rate of
acceleration, linear rate of change, and an inptrce

In a simple repeated measures design, indivicaralsepeatedly observed and individual
trajectories are plotted to assess average treagffents on a specific polynomial change
parameter. In this chapter we extend the simplggdee settings in which individuals are nested
within clusters and treatment is applied at thetelulevel. This allows us to assess the average
difference in the polynomial change parameterliose in the treatment group and those in the
control group, accounting for the cluster effect.

The power to detect the main effect of treatmerat repeated measure cluster
randomized trial is more complicated than in atedusandomized trial because we need to take
the repeated measures on each person into congdefeor simplicity, we assume orthogonal
designs with continuous outcomes, a random-eff@mtariance structure, homogeneous
covariance structures within treatments, and cotelata. The data lend to the three-level
hierarchical model described in the next section.

11.1 The model

Data from a cluster randomized trial with repeateshsures on the individuals can be
represented with a three-level model, with occasimested within persons and persons nested
within clusters. The general level-1 model, or sgpd measures model, represents the trajectory
of change for person as a polynomial function of degrée-1 defined at equally spaced

observations. The model is:
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p-1
Yoii = Zﬂpijcpm € €nj ~ N, o?) [11.1]
p=0

for mO{12,...,M} observationsj 0{12,...,n Jersons, and 0{12,...,J ¢lusters, where
p is the polynomial order of change (e.g., linearadyatic, or cubic);

n,; is the level-1 coefficient for the polynomial afderp;

C,n IS the orthogonal polynomial contrast coefficient;

e . IS the error associated with the repeated megsames

mij
o? is the within-person variance.
Note the orthogonal polynomial contrast coefficgeate necessary to center the data. These
coefficients are given by (see, e.g., Kirk 1982ué&anbush and Liu 2001):
Com =1, [11.2]

Cim :m—im/M :

m=1
U 2 2
Com == | Coy = D_Ci /M |, and
2 m=1
- 4
Cim
C =lcf—Zi Cy |-
3m 6 m

m M
2
2 Cim
m=1

The level-2 model, or person-level model, is:
Ty = Booj + i ryi ~N(O,7,) [11.3]

py

where B .. is the cluster mean for tipd polynomial change parameter;

pOj

r, is the random effect associated with the persamnd;

r,, I1s the between-person variance for plepolynomial change parameter.
The level-3 model, or cluster level model is:

Booi =Veoo T VoW, + U0, Uy, ~ N(O,74) [11.4]
wherey , is the grand mean for the polynomial order of ¢ean

Vo0 IS the main effect of treatment;

W, is a treatment contrast indicator, ¥ for treatnaamt -v% for control;
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u._.. is the random effect associated with each cluatat;

pOj
T 5 1S the between-cluster variance for the polynomieker of change.

To help clarify the general model, consider a fitasgjree polynomial order of change, or

linear model(p =1). The level-1 model is:

Yo = Ty + 71 Cypy + €

2
mij 1 Cnij ~ N(,o7) [11.5]
for mO{12,...,M} occasionsj [1{1,2,...,n Jpersons, and 0{12,...,J ¢lusters,
where 7z, is the mean response for persam clusterj on occasiom,

T,

5 IS the average rate of change for persionclusterj on occasiomy,

C,, IS the orthogonal linear contrast coefficient;

e . IS the error associated with the repeated megsames

mij

o? is the within-person variance.

Note that in the case of the linear model, the resticoefficients are easily computed using the
formulas in equation 2. For exampleMES5, the orthogonal contrast coefficients for atfirs
degree polynomial are:

C. =

C: _ (Eliijiz)q,z) [11.6]
The level-2 model, or person level model is:

o = Booj * o rij ~ N(0,7,) [11.7]

Ty = Buoj 1y ry; ~N@O7,)

where g, is the mean response in clugter
Byo; is the average growth rate in cluster
ry; IS the random effect associated with the mean resptor personin cluster;

r,. 1S the random effect associated with the growté far person in clusterj;

1ij
T, IS the between-person variance in means; and
T, IS the between-person variance in growth rates.

The level-3 model, or cluster level model is:
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Booj = Vooo + VooV, + Ugg; Ugo; ~ N (0,7 4) [11.8]
Bioj = Voo t VoW, + Uy, Uy, ~ N(0,74)
where ), is the grand mean;
Y001 IS the main effect of treatment for the mean;
W; is the treatment indicator, %2 for treatment andet/£ontrol;
Y100 IS the average growth rate;
V101 1S the main effect of treatment for the growtresat
Ugo; IS the random effect associated with the meardah cluster;
Uy, is the random effect associated with the growte far each cluster;
T, is the between-cluster variance in means; and
T4 Is the between-cluster variance in growth rates.

Note that for a first degree polynomial, our prisnarterest is in growth rates, thus we are

interested iny,,,, the main effect of treatment on the growth raées) in7 ,, , the between-

cluster variance in growth rates.
11.2 Testing the treatment effect
The average treatment effect for tiiepolynomial order of change in our balanced deign

defined at level 3. It is estimated by:

Je n Je n
3 g8n
Vo1 = nJ. - N, [11.9]

M

Clem ij

is the ordinary least squares estimate of the pespecific linear growth rater; .

The variance of the treatment effect for fifepolynomial order of change (Raudenbush & Liu,

2001) is:
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A1 + (1, +V,)IN]

var(yy,) = 3 : [11.10]
v = o> _o’ft?®(M -p-1)!
P M C2 Kp(M + p)|
m=1 o

where f is the frequency of observation;

D is the duration of the study;
M is the total number of occasioMd=Df+ 1;

p is the polynomial order of change; and
K, is a constant, wherk, =1/12, K,=1/720, andK ;=1/100,800.
Note thatV denotes the conditional variance of the leasteguestimate of each participant’s

change parameter.
We can translate the above formulas to a more etmexxample in the case of a first

degree polynomial. For a first degree polynomiag, variance of the estimate of the treatment

effect is:
- A7, +(r,,+V,)/n
var(y,,,) = s (31 )/l [11.11]
2 2¢2 — 2\
where v, =— 2 =2 T (M~2) [11.12]

Mo, 112AM +1)!
zclm
m=1

In the general case, we can use the following Hgsws to test the significance of the
main effect of treatment for the polynomial ordéirterest:
Hy Vo0 =0
0 7et [11.13]
Hy Vo 20
When the null hypothesis is true, the test statistanF statistic and follows a centr&l
distribution,F(1, J-2). The test statistic is:
= Vou [11.14]
var(y,o.)
When the alternative hypothesis is true, the tagistic remains the same but follows a

noncentraF distribution,F(1, J-2; A). Recall that the noncentrality parameter is @ raft the
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squared treatment effect to the variance of therment effect estimate. The noncentrality
parameter is:

= y§01 — ‘Jysm
Var(f,e) Mty + (T, +V,)/n]

[11.15]

Recall that the larger the noncentrality paramekher greater the power of the test. Looking at
the formula, we can see thhis the most influential sample size for increadimg power. In
other words, the number of clusters in more impudrthan the number of people within each
cluster to increase the power. It is particulanhportant to have a large number of clusters if

there is a lot of between-cluster variatiam, . Also, increasing the number of occasidus,

reduces the within-person variance, which incretisepower. Note thad¥l is a function of and
D, whereM=(fD+1) so increasing the frequency of the observatayrduration of the study
increased/. Increasingy, the number of people within each cluster, wilcatiecrease the total
within and between-person variance, thus increasiagpower. Finally, larger effect sizes
increase the power to detect a treatment effect.
11.3 Standardized notation

Thus far, we have concentrated on the unstandatdimelel. However, similar to cluster
randomized trials, and without loss of generaliggearchers typically use standardized notation.
Let’s see how we translate the parameters to stdizeéa notation.

The standardized effect size for a polynomial rofeop is:

y pO1

1/Z'ﬂp+l',p

J= [11.16]

where

Y01 IS the main effect for the polynomial order of nbe, and
T, +T, Isthe total between-cluster and between-persaanee, denoted .

In words, 0 is the group difference on the polynomial of ierdivided by the standard
deviation for that polynomial, or the square robthe sum of the between-cluster variance and
the between-person variance for the specified motyal. Similar to standardized models we

defined in previous chapters, we need to definghe intra-class correlation. The intra-class

correlation, p, is:
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4
p=—2*"® [11.17]
Tﬂp + T,p

where 7 = Tp+T, is the total between-cluster and within-clustenasece;

T4 Is the between-cluster variance on the polynoofiatterest; and

T, is the within-cluster variance on the polynomigingerest.

Note thatifr =1, thenz, = p andr,, =1- p which is consistent with the intra-class

correlation for a cluster randomized trial. Alsm,is a ratio of the between-cluster variance to
the total variance for a specific polynomial ordéchange. We can think gb as partitioning

the growth-rate variance into a between-clustenaititin-cluster component.

Using the standardized effect size, p ,and constraining = e can rewrite the
variance of the treatment effect estimate as
Ap+QL-p+V,)In]

J
Another simplification involves rewriting the vaniee in terms of the reliability of the person-

var(yy) = [11.18]

specific polynomial change. The reliability is dézwa ,and is defined as:

T
a,=—"—. [11.19]
T p

Rewriting the variance in terms of the reliabiltye get:

4p+d-p)l(ayn)]
] :

We write the variance in this form because stangandrams for hierarchical data often give us

var(y,q,) = [11.20]

an estimate of the person specific reliability.
We can also rewrite the noncentrality parametergistandardized notation. The new
noncentrality parameter is:
1= Jo?
4 p+QA-p)l(a,n)]

Note that the power is now a function of the numifesiusters,], the cluster size, the

[11.21]

standardized effect sizé, the intra-class correlationg, the reliability, a ,, which is a function
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of the between-person variangg, , the within-person variance;®, the study duratiorD, the

frequency of the observatiorfsand the number of occasions,
11.4 Using Optimal Design for cluster randomized ials with repeated measures

The cluster randomized trial with repeated measaption allows the researcher to
explore the power for the main effect of treatmest function of the cluster size,the number
of clusters,], the intra-class correlationg, and the desired effect size, Below is the menu.
Power on y-axis

Power vs. Cluster Siza)(

Power vs. Number of Cluster3) (

Power vs. Intra-class Correlatiop §

Power vs. Effect Sized)
MDES on y-axis
MDES vs. Cluster Sizen)
MDES vs. Number of Clusters)(
MDES vs. Intra-class Correlationp()

MDES vs. PowerR)

11.5 Example

Imagine that a group of researchers develop a t@mips program for first graders. The
program is an intense year-long program. The rebees propose a repeated measures design
for students nested within schools. They plan g&ss students at the beginning of the year, prior
to treatment, and then on six occasions througtheuyear. Researchers are interested in the
growth rate of students so they propose a lineatalh®ast research suggests that 15 percent of
the total variation in the outcome is between sthokhe researchers conducted a pilot study
and found estimates of the within person variaptfit be 1.0 and the overall variability in
growth rates to be 1.0. Section 11.6 presentsraasicein which the power determination
approach to conducting a power analysis is the mygstopriate and provides the details of how
to do the power analysis. Section 11.7 presentgm@asio in which the effect size approach for
conducting a power analysis is most appropriatepradides the details of how to do the power
analysis.
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11.6 Power determination approach for conducting @ower analysis

In scenario 1, the researchers are interestedtecting an effect size of 0.30. They plan
to assess 20 students in each school and estimat&aclass correlation of 0.15. How many
schools are necessary for power = 0.807?

In Scenario 1, the total number of clustelsig unknown so we select the power vs. total
number of clusters]j option. This allows the number of clusters topalong the x-axis. The
steps for conducting the power analysis follow.

Step 1: Select Desige» Cluster randomized trial with person level outcsereCluster
randomized trials> Repeated measures Power on the y-axi® Power vs. total number of

clusters {). Figure 11.1displays the screen.

~igix]
Fle Design Working Help

i
o |n|p]8]smfsfss] L2]ve|m| & |s|X]

Figure 11.1. Initial screen for cluster randomized trials widpeated measures.

Step 2: Click on n. Set n(1) = 20.

Step 3: Click ormp. Setp (1) = 0.15.

Step 4: Click ord. Sets (1) = 0.30.

Step 5: Click on set. Setf =1, d = 6, variabibfylevel-1 residual = 1, variability of level-1

coefficient = 1, select polynomial order linear.e€limal curve appears in Figure 11.2.
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Figure 11.2.Power curve.
Clicking along the trajectory reveals that approxiety 72 clusters are required for the study,
that is, 36 in the treatment condition and 36 m¢bntrol condition.
11.6 Effect size approach for conducting a power afysis

In scenario 2, the researchers are have securech®dls and they plan to assess 20
students in each school. They estimate an intraclagelation of 0.15. What is the MDES for
power = 0.807?

In Scenario 2, the MDES is unknown so we selecMB¥S vs. total number of clusters
(J) option. This allows the power to vary along thaxis. The steps for conducting the power
analysis follow.
Step 1: Select Desige» Cluster randomized trial with person level outcsereCluster
randomized trials> Repeated measures MDES on the y-axis> MDES vs. total number of
clusters J). Figure 11.3 displays the screen.
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Figure 11.3 Initial screen for cluster randomized trialsiwiepeated measures MDES vs. total
number of clusters]j.

Step 2: Click on n. Setn(1) =20

Step 3: Click orp. Setp (1) = 0.15.

Step 4: Click orP. SetP(1) = 0.80

Step 5: Click on set. Setf =1, d = 6, variabibfylevel-1 residual = 1, variability of level-1

coefficient = 1, select polynomial order linear.elimal curve appears in Figure 11.4.

» Optimal Design (=] 5|
File Design Working Help
. CRT Repeated Measures - Minimum detectable effectis O] x|
afn|p[P [se|mdead  lo|nsfon]@[o] x|
i .= 0.050
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05 -] o =1.000000
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E 074 fi= 20, p= 015 P= 0.80
f
e 05 -
C
t 05
s
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z
e 03
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I T T I I
k=] 42 61 a0 28
Number of clusters

Figure 11.4. Power curve.

Clicking along the trajectory reveals a MDES of mp@mately 0.32 with] = 60.
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Section IV: Optimal Design for cluster randomizedtrials with binary outcomes
Optimal Design for cluster randomized trials wifihary outcomes includes trials where

intact groups, or clusters, are randomly assigndtd treatment or control condition. The
designs included in this section are the two-lehester randomized trial (2-level CRT), the
three-level cluster randomized trials (3-level CRANd the multisite cluster randomized trial
(MSCRT), a subset of the designs included in Sedtip Optimal Design for Cluster
Randomized Trials. However, the difference in #@stion is that the outcome is binary. For
example, a study in which the primary outcome &lgation status (yes/no) would require a
power analysis for a binary outcome. We descrileectinceptual details of each design and

provide a “how to” guide for each design in thddaling 3 chapters.
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12.0 Two level cluster randomized trials with a biary outcome

The general design of a 2-level CRT with a binarjcome is the same as a 2-level CRT
with a continuous outcome: students nested wittiosls, or more generally, the level-1 units
nested within the level-2 unit. However, the outeovariable is different. For example, the
outcome for a study might be whether or not a studeops out of school or whether or not a
student drinks alcohol in high school. The varidids only two possibilities so the outcome is
binary. Because of the structure of the data, tbdehfor a CRT with a binary outcome is
slightly different than the model for a CRT witlt@ntinuous outcome. Let’s take a closer look
at the model.

12.1 The model

The model for a 2-level CRT with adiy outcome can be thought of as an extension of
the generalized linear model applied to a multelesetting. The level-1 model is comprised of
three parts: the sampling model, the link functiemgl the structural model. The level-1 sampling
model defines the probability that the event wdtor. LetY;=1 if an event (often called a
“success”) occurs and;=0 if not. The sampling model is:

Y lg ~B(m.qg) [12.1]
for i0{12,...,n;} persons per cluster and fot1{12,...,J clusters;
where my; is the number of trials for persoin clusterj; and

@ s the probability of success for perddn cluster).
The expected value and varianceYpf| g are:
ECY, 14) =mg
var(Y; |¢) =mg (-¢) [12.2]

Note that in the case of a Bernoulli triat, = 1 so the expected value ¥f | g, reduces tag and
the variance reduces g (1-¢ ). A common link function for a binary outcomethe logit link:
n;, = |og[iJ [12.3]

1-4

wherey, is the log odds of success.
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The probability of success, the odds of succesbttaanlog odds of success are all
related. If the probability of succesg,, is 0.50, then the odds of success are 0.5/(0,%nd
the log odds of success is log (1)=0. If the praiigiof successg , is greater than 0.5, then the
odds of success are greater than 1, and the logafdsiiccess is positive. If the probability of

successg , is less than 0.5, then the odds of successsdt@s 1 and the log odds of success is

negative.
The third part of the level-1 model is the struatunodel:

Ny = By, [12.4]
where 43, is the average log odds of success per clyster

The level-2 model has the same form as the leveb@el for a 2-level CRT with a
continuous outcome. However, the interpretatiothefparameters differs because of the logit
link function:

Boi = Voo + VoV, Uy , Uy; ~N(O,7) [12.5]
where ), is the average log odds of success across clusters

Y1 Is the treatment effect in log odds;

W, is ¥ for treatment and -% for control;

Up; is the random effect associated with each clustan; and

7 is the between cluster variance in log odds.
12.2 Testing the treatment effect

The framework for testing the main effect of treant in the case of a binary outcome is
similar to the case of a continuous outcome. Imtioelel above (equation 5), the treatment effect
is denotedy,, . It is estimated by:

Vor =1 ~1c [12.6]
wherer; is the predicted mean for the experimental groupgs odds and. is the predicted

mean for the control group in log odds. In a batahdesign (equal cluster sizes of six¢he
variance ofy,, can be approximated by:

AT+ 0’ In) (12.7]

Var(y,,) = ]
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Whereazz( 1 + 1 J/Z
@l-@) al-@)

N

The test statistic is You
Jar+a?in)id

approximate the power of the test with J-2 degofdieedom.

. We use the non-central t-distribution to

12.3 Using the Optimal Design for two-level clusterandomized trials with a binary
outcome

The binary outcomes option for the two-level clustsmdomized trial is limited to power
on the y-axis. The menu for the 2-level CRT withigary outcome is shown below and can be
found by clicking on the following: Desigt» Cluster randomized trials with person level
outcomes> Cluster randomized trial® Treatment at level 2.
Power on y-axis

Power vs. cluster siza)(

Power vs. total number of cluste® (

Power vs. probability of success in treatment grguhi(E))
We present an example below and go through the steplved in conducting a power analysis
for a 2-level CRT with a binary outcome variable.
12.4 Example

Suppose a team of researchers are investigatingffdes of a new “Stay in School
Campaign.” They believe that students that paritgpn the program are more likely to graduate
from high school than students who do not partieipa the program. The program targetg‘ 12
grade students. The program is implemented atdheos$ level thus we have a nested data
structure of students within schools. The outcoardtie study is whether or not a student
graduates from high school in 4 years. Based ohdada, the researchers expect the probability
that a student graduates from high school in 4sygmbe 0.6 with bounds around this estimate
from 0.2 to 0.8. The researchers anticipate thbayiity that a student graduates to be 0.75 in
schools that adopt the new “Stay in School Campaifmey expect to have about 200 students
per school. How many schools are required to débectreatment effect with power = 0.80?

In this example, the total number afstérs,J, is unknown. As a result, we want to select
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the power vs. number of clusted ¢ption. This allows the number of clusters toyalong the
x-axis. The steps for conducting the power analfggiew.

Step 1: Select Desige» Cluster randomized trials with person level outesm» Cluster
randomized trials> Treatment at level 2 Power on y-axis (binary outcome) Power vs.

number of clusters]j as shown in Figure 12.1.

i
Fle Design Working Help

=l
| n | do|dolproxlssd] 1] ve | & [o| X

Figure 12.1.Blank screen for 2-level CRT with binary outcomes.
The toolbar at the top includes the parametersiredjfor calculating the power: sample size
within cluster (n), the probability of success le treatment groupg. ), the probability of

success in the control groug.(, and the Plausible Interval for success in tharob group. The

number of clustersJj does not appear on the toolbar because it valoeg) the x-axis.
Step 2: Click on n. Set n(1) = 200. The default poeurves appear. However, we must first set
the additional parameters to match the valuesarptrticular example before we interpret the

curves.
Step 3: Click ong.. Setg.= 0.75. This is the probability of success in tleatment group.
Step 4: Click on PI. Set the lower bound = 0.20 gnedupper bound = 0.80. This is the range of

plausible values for the probability of succesthicontrol group. Note that. must fall within
this range. Click ony.. Set¢.= 0.60. This is the probability of success in thatcol group.

Step 5: Click ong.. Set¢.= 0.60. This is the probability of success in tbatcol group.

The resulting power curve is in Figure 12.2.
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Figure 12.2 Power vs. number of clusters.
Clicking along the power curve, we can see that@pmately 36 schools are required for the
study.

The example provided in this section placed ti& toumber of clusters on the x-axis.
However, the number of persons per cluster or tbhbability of success in the treatment group
could be placed on the x-axis and the steps casdiyebe adapted to conduct the power

analysis.
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13.0 Three level cluster randomized trials with a imary outcome

The general design of a 3-level CRT with a binaujcome is the same as a 3-level CRT
with a continuous outcome: for example, studenstatkwithin classroom nested within schools,
or more generally, the level-1 units nested withia level-2 unit nested within the level-3 unit.
However, the outcome variable is binary, thathsyé are two possible values the variable can
take. For example, the outcome for a study mighwbether or not a student drops out of school
or whether or not a student drinks alcohol in lsghool. Because of the structure of the data, the
model for a CRT with a binary outcome is more cawghan the model for a CRT with a
continuous outcome. First we take a closer loadkaimodel.

13.1 The model

The model for a 3-level CRT with a binary outconaa te thought of as an extension of
the generalized linear model applied to a multelesetting. The level-1 model is comprised of
three parts: the sampling model, the link functimg the structural model. The level-1 sampling

model defines the probability that the event wiltor. The sampling model is below:

Yic | B ~ B(My, @) [13.1]
for i0{12,...,n;} persons per cluster, fgrlJ{12,...,J dlusters per site and for
k{L2,...,K} sites.
where m, is the number of trials for persoim cluster in sitek; and

@, is the probability of success for persgadn clusterj in sitek.
The expected value and varianceYpf| ¢, are:

E(YVi [ 8) = My i

Var(Yy 1g,) = m, g 1- ¢ ) [13.2]
Note that in the case of a Bernoulli triat, = 1 so the expected value ¥f | ¢, reduces to
@, and the variance reduces¢p (1-¢, ). A common link function for a binary outcometie

logit link:
ik :Iog[ % J [13.3]

1—44Jk
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where,, is the log odds of success.

The probability of success, the odds of succesbifamlog odds of success are all

related. For example, if the probability of succegs, is 0.50, then the odds of success are
0.5/(1-0.5)=1, and the log odds of success is19gd. If the probability of succesg, , is

greater than 0.5, then the odds of success artegtban 1, and the log odds of success is

positive. If the probability of succesg, , is less than 0.5, then the odds of successsdhies 1

and the log odds of success is negative.

The third part of the level-1 model is the struatunodel:

N = Boi [13.4]
where g, is the average log odds of success per clystesitek.

The level-2 model takes the same form as the [Bvabdel for a 3-level CRT with a
continuous outcome. However, the interpretatiothefparameters differs because of the logit
link function:

The level-2 model, or cluster-level model, is:

i = Book * Tojk o ~N(@O,7,) [13.5]
where S, is the average log odds of success for site k;

ro; 1S the random effect associated with each cluste;

T, is the between-cluster variance in log odds wiiies.

The level-3 model, or site-level model, is:

Booc = Yooo + Voo + Uoo Uoox ~ N (0.7,) [13.6]
where y,,, is the estimated grand mean in log-odds of success

Yoo1 IS the average treatment effect in log-odds (“nedfact of treatment”);

W, is 0.5 for treatment and —0.5 for control,

U,y IS the random effect associated with each sitenmea

75, IS the between-site variance in log-odds.

Note that the randomization in this design occtite\ael 3.
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13.2 Testing the treatment effect

The framework for testing the main effect of treant in the case of a binary outcome is
very similar to the case of a continuous outconreabée. In the model above (equation 5), the
treatment effect is denoted, . It is estimated by:

Voor=1e —1c [13.7]
wherer. is the predicted mean for the experimental groupgs odds and,. is the predicted

mean for the control group in log odds. The vargaotthe estimated treatment effect can be

approximated by:

A Ar, +(r.+d*In)/J
Var(yo) = 1k (”K )] [13.8]
Whereazz( ! + ! J/Z
q’E(l_q’E) ¢c(1_¢c)

A

The test statistic is Vou
J@@,, + @, +a?In)3)/K

to approximate the power of the test with K-2 degref freedom.

. We use the non-central t-distribution

13.3 Using the Optimal Design for three level clust randomized trials with a binary
outcome

The menu for the 3-level CRT with a binary outcamshown below and can be found
by clicking on the following: Desigr> Cluster randomized trials with person level outesr»
Cluster randomized trial> Treatment at level 3. In this section we focusborary outcomes as
shown below.
Power on y-axis (binary outcomes)

Power vs. cluster siza)(

Power vs. number of clusterd (

Power vs. number of siteK)

Power vs. probability of success in treatment gr@ahi(E))
The options present the power on the y-axis aigethe cluster size, number of clusters, or
probability of success in the treatment group @xfaxis. We present an example below and
guide the user through the steps for approachie@xiample via the power determination

approach.
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13.4 Example

Suppose a team of researchers are investigatngfticts of a new “Stay in School
Campaign.” They believe that students that parmitgpn the program are more likely to graduate
from high school than students who do not partieipa the program. The program targetg‘ 12
grade students. Although the program is adopteddelide, the program components are
delivered in first hour. The researchers suspextthill be differences with respect to the
teacher who delivers the program so they are isteden designing a three level study with
students nested within teachers nested within $sh®be outcome for the study is whether or
not a student graduates from high school in 4 y&ased on past data, the researchers expect
the probability that a student graduates from lsigfiool in 4 years to be 0.6 with an upper and
lower bound of 0.2 and 0.8, respectively. The regess anticipate the probability that a student
graduates to be 0.75 in schools that adopt the“Séay in School Campaign.” They expect to
have about 25 students per teacher and 6 teaokresstpool. The researchers also suspect that
about two-thirds of the variance is between sites@ne-third is between clusters within sites.
How many schools are required to detect the treaiteféect with power = 0.80?

In the example, the total number of scho#lsis unknown. As a result, we want to select
the power vs. total number of schodf§ fption. This allows the number of clusters toyar
along the x-axis. The steps for conducting the pamalysis follow.

Step 1: Select Desige» Cluster randomized trials with person level outesm» Cluster
randomized trials> Treatment at level & Power on y-axis (binary outcome) Power vs.

total number of clusterK] as shown in Figure 13.1.
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Figure 13.1 Blank screen for 3-level CRT with binary outcomes
The toolbar at the top includes the parametersiredjfor calculating the power: sample size

within cluster (n), the number of clusters per éie the probability of success in the treatment

group (&), the probability of success in the control gr¢yp), the Plausible Interval for success

in the control group, and the set button. The sébh asks the user to specify the percent of
variability at the cluster level and the site levie total number of siteK) does not appear on
the toolbar because it varies along the x-axis.

Step 2: Click on n. Set n(1) = 25. The default poeteves appear. However, we must first set
the additional parameters to match the valuesarptrticular example before we interpret the
curves.

Step 3: Click onl. SetJ(1) = 6. This the number of clusters per site.

Step 4: Click ong.. Setg.= 0.75. This is the probability of success in tleatment group.

Step 4: Click ong.. Set¢.= 0.60. This is the probability of success in tbatcol group.
Step 5: Click on PI. Set the lower bound = 0.20 #redupper bound = 0.80. This is the range of
plausible values for the probability of succesthie control group. Note that. must fall within

this range.
Step 6: Click on set. Specify the percent of var@abetween clusters within sites. The percent of
variance between sites will automatically be calted as 1 — percent of variance between

clusters. Set the percent of variance betweenearkist 0.33.
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Figure 13.2 Power vs. total number of sites.
Clicking along the power curve, we can see that@pmately 28 schools are required for the
study, 13 schools in the treatment condition andd®ols in the control condition.

The example provided in this section placed th& toumber of sites on the x-axis.
However, the number of persons per cluster, thebmuraf clusters per site, or the probability of
success in the treatment group could be placeti®r-bxis and the steps could easily be

adapted to conduct the power analysis.
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14.0 Multisite Cluster Randomized Trials (MSCRT) wth Binary Outcomes

The general design of a MSCRT with a binary outeasithe same as a MSCRT with a
continuous outcome: for example, students nestddmilassrooms which are blocked by
schools. However, the outcome variable is bindrgt is, there are two possible values the
variable can take. For example, the outcome faudysmight be whether or not a student drops
out of school or whether or not a student drinkslabl in high school. Because of the structure
of the data, the model for a MSCRT with a binarycome is more complex than the model for a
CRT with a continuous outcome. Let's take a cldsek at the model.

14.1 The model

The model for a MSCRT with a binagta@me and random site effects can be thought
of as an extension of the generalized linear magplied to a multi-level setting. The level-1
model is comprised of three parts: the samplingehdte link function, and the structural
model. The level-1 sampling model defines the pbdltg that the event will occur. The

sampling model is below:

Yic | B ~ B(My, @) [14.1]
for i0{12,...,n;} persons per cluster, fgrlJ{12,...,J dlusters per site and for
k{L2,...,K} sites.
where m, is the number of trials for persoim cluster in sitek; and

@, is the probability of success for persgadn clusterj in sitek.
The expected value and varianceYpf| ¢, are:

E(YVi [ 8) = My i

var(Y [ @) = My € @) [14.2]
Note that in the case of a Bernoulli triat, = 1 so the expected value ¥f | ¢, reduces to
@, and the variance reduces¢p (1-¢, ). A common link function for a binary outcometie

logit link:
ik :Iog[ % J [14.3]

1—44Jk
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where,, is the log odds of success.

The probability of success, the odds of succesbifamlog odds of success are all

related. For example, if the probability of succegs, is 0.50, then the odds of success are
0.5/(1-0.5)=1, and the log odds of success is19gd. If the probability of succesg, , is

greater than 0.5, then the odds of success artegtban 1, and the log odds of success is

positive. If the probability of succesg, , is less than 0.5, then the odds of successsdhies 1

and the log odds of success is negative.

The third part of the level-1 model is the struatunodel:
M = ﬁojk [14.4]
where g, is the average log odds of success per clystesitek.

The level-2 model takes the same form as the [Bvabdel for a MSCRT with a
continuous outcome. However, the interpretatiothefparameters differs because of the logit
link function:

The level-2 model, or cluster-level model, is:

i = Book ¥ BoaWi + o o ~N@O,7,) [14.5]
where S, is the average log odds of success for site k;

B 1S the treatment effect at ske

W, is a treatment contrast indicator, %2 for treatnaamt -%2 for the control;

ro; 1S the random effect associated with each cluste;

T, is the between-cluster variance in log odds witiies.
The level-3 model, or site-level model, is:

Boo = Vooo + Yoo var (Upy ) ~ 74,

Bow = Yoro + Uox var (Upy) ~7p, COV(Ugg»Ug ) =T, [14.6]
where J,is the estimated grand mean in log-odds of success;

Yo10 IS the average treatment effect in log-odds;

Uy IS the random effect associated with each sitenmea

U,y IS the random effect associated with each sitrrent effect;
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7, 1s the between-site variance in log-odds;
7, Is the between-site variance on the treatmenteifieog-odds; and
7, 1s the covariance between site-specific meanss#aespecific treatment effects.

14.2 Testing the treatment effect

The framework for testing the main effect of treant in the case of a binary outcome is
very similar to the case of a continuous outconréatbée. In the model above (Equation 14.6),
the treatment effect is denotegl . It is estimated by:

Voor =11 ~1c [4.7]
wherer. is the predicted mean for the experimental groupgs odds and,. is the predicted

mean for the control group in log odds. The vargaotthe estimated treatment effect can be

approximated by:
Var(yo) =[5, + (4@, + o 1m)1 3]/ K

where g :( 1 + 1 j/Z
@ (1_¢E) % (1_@:)

n

The test statistic is Vo1 . We use the non-central t-distribution to
J (@, + 4T, + 0% M)/ 3] /K

approximate the power of the test with K-1 degrafefseedom.
14.3 Using the Optimal Design for multisie clusterandomized trials with a binary outcome

The menu for the MSCRT with a binary outcome isvat below and can be found by
clicking on the following: Desigr> Cluster randomized trials with person level outesr»
Multi-site Cluster randomized triat® Treatment at level 2. In this section we focus maty
outcomes as shown below.

Power on y-axis (binary outcomes)

Power vs. cluster size)(

Power vs. number of clusterd (

Power vs. number of siteK)X

Power vs. probability of success in treatment gr@ahi(E))
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The options present the power on the y-axis atnethe cluster size, number of clusters per
site, total number of sites or probability of sussé the treatment group on the x-axis. We
present an example below and guide the user thrthegsteps for approaching the example.
14.4 Example

Suppose a team of researchers are investigatingfticts of a new “Stay in School
Campaign.” They believe that students that paritgpn the program are more likely to graduate
from high school than students who do not partieipa the program. The program targetg‘ 12
grade students. The researchers suspect thatateedifferences between districts so they decide
to block on district. That is, within each distrittiey will randomly assign schools to either the
new program or the current program. The outcoméhi@istudy is whether or not a student
graduates from high school in 4 years. Based ohdada, the researchers expect the probability
that a student graduates from high school in 4sygmbe 0.6 with an upper and lower bound of
0.2 and 0.8, respectively. The researchers anteip& probability that a student graduates to be
0.75 in schools that adopt the new “Stay in Scl@shpaign.” They expect to have about 200
students per school and 6 schools per districtudgsg a small effect size variability, how many
districts are required to detect the treatmentcefigth power = 0.807?

In this example, the total number of districtsis unknown. As a result, we want to select
the power vs. total number of sité§) Option. This allows the number of sites to vaiong the
x-axis. The steps for conducting the power analfgdiew.

Step 1: Select Desige» Cluster randomized trials with person level outes» Multisite (or
blocked) trials> Treatment at level 2 Power on y-axis (binary outcome&) Power vs. total

number of sites) as shown in Figure 14.1.
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Figure 14.1.Blank screen for power vs. total number of sites.
The toolbar at the top includes the parametersiredjfior calculating the power: sample size

within cluster (n), number of clusters per silg {the probability of success in the treatment

group (@), the probability of success in the control gr¢yp),the Plausible Interval for success

in the control group and ESV. The ESV specifiesdtiect size variability, or if the sites are
treated as random, how the sites differ with respmethe treatment effect. If the sites are treated
as fixed effect, the user should set the ESV {bh@. total number of site&] does not appear on
the toolbar because it varies along the x-axis.

Step 2: Click on n. Set n(1) = 200. The default poeurves appear. However, we must first set
the additional parameters to match the valuesarptrticular example before we interpret the
curves.

Step 3: Click onl. SetJ(1) = 6.

Step 4: Click ong.. Setg.= 0.75. This is the probability of success in tteatment group.

Step 5: Click ong.. Setg.= 0.60. This is the probability of success in tbateol group.
Step 6: Click on PI. Set the lower bound = 0.20 #redupper bound = 0.80. This is the range of

plausible values for the probability of succesthi control group. Note that. must fall within

this range.
Step 7: Click on ESV. Set ESV to small. The resgliturve is in Figure 14.2.
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Figure 14.2 Power curve.
Clicking along the power curve, we can see that@pmately 13 districts are required for the
study with 6 schools per district.

The example provided in this section placed tih& taumber of sites on the x-axis.
However, the number of persons per cluster, thebmuraf clusters per site, or the probability of
success in the treatment group could be placed®r-axis and the steps could easily be

adapted to conduct the power analysis.

144



Section V: Optimal Design for measurement of grouprocesses

Optimal Design for measurement of group processdades trials where the outcome of
interest is measured at the group level, not tHevidual level. The instruments used to measure
the quality of functioning of a group or an orgaatian typically rely on either observational data
or interview data. Inherent in both observatioretbdand interview data is measurement error.
The magnitude of the measurement errors reduceglibbility of the instrument. Similarly, the
reliability is related to the power of a test; tireater the reliability, the greater the power. §hu
instruments that exhibit higher levels of relialyilare advantageous to researchers planning
cluster randomized trials to measure group prosesg® adequate power. The power analyses
in this section account for reliability of measucdgroups. The designs included in this section
are the two-level cluster randomized trial withlaster-level outcome, the three-level cluster
randomized trial with a cluster-level outcome, @mel multisite cluster randomized trial with a
cluster-level outcome. We describe the conceptetild of each design and provide a “how to”

guide for each design in the following 3 chapters.
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15.0 Two-level cluster randomized trials with a clster-level outcome

Two-level cluster randomized trials with a clusi&rel outcome are studies in which the
measure is at the group or cluster level and thieofimandomization is also at the group level.
For example, suppose a group of researchers amested in the effect of a classroom
intervention on classroom quality. Classrooms arelomly assigned to receive the intervention
and observers collect data on classroom qualitg. cTassroom is the unit of measure and the
unit of randomization. The unreliability with whi¢he classroom is measured contributes to the
power to detect the treatment effect. First, war@ra the model in order to determine what
affects the power of the study.

15.1 The model

We can think of this as a two level model wheresl@ne is a measurement model and
level two represents the cluster level. The meament model captures all sources of
measurement error, such as temporal variation re@seariation, individual variation, or item
variation. Consider an admittedly over-simplifiemse in which there one and only one
classroom is sampled within each school and wher@nly source of measurement error is item
inconsistency (for now we assume other sourcebjding rater error and temporal instability, to
be null). We also assume each item to be normalyilduted about a common classroom mean.

Then a level-1 model might be

Y, =B +8 g ~N(©0,0?) [15.1]
for

t=1,....,T items within a scale

j =1,...J clusters
where

B,; is the mean score in clusfer

g is the measurement error associated with each item

The level-2 model is:
Boi = Voo + VoWV, +Uy, Uy; ~N(O7) [15.2]

where
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Yoo IS the grand mean

Yo.1S the treatment effect

U, is the error associated with each cluster
r is the between cluster variance.

15.2 Testing the treatment effect

We are interested in the main effect of treatmgptwhich is estimated by:
Vor=Ye—Yc, [15.3]

whereYe is the mean for the experimental group afdis the mean for the control group.

When each treatment has an equal nuni#2y of clusters, the variance of the main effect of

treatment is:

Ar+o?lT)
J

whereT is the number of items within the scale dnd the total number of clusters.

var(fy,) = [15.4]

We are interested in testing the null hypothesisootreatment effect.

Hy: Vo =0vs.H, 1y, #0,
The test statistic is dn statistic. Assuming there is a difference in gmupeF test follows a
non-centraF distribution,F(1, J-2; A). Below is the noncentrality parameter for the,tést

which is the ratio of the squared-treatment effe¢he variance of the treatment effect estimate.

A= ygi - KYoo [15.5]
Var(y ) 4(T+02/T)/J
01

15.3Standardized Notation
For studies measuring group processes, we standdhd model differently than for
studies measuring individuals. The first differeice the effect size. We define the

standardized effect size below:

—You
5= e [15.6]

Note that the effect size is divided by the squace of the level-2 variance. This differs from
the 2-level CRT notation for individual-level outoes, which divides the effect size by the

square root of the sum of the level-one and lewelxtariance. The reason this effect size is
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divided by only the level-2 variance is becauseaweemeasuring a level-2 process. We are
looking at change in group processes so we onlyt teamse the between group variance and not
the measurement error to standardize the valugthler words, standardization occurs at the
level of randomization.

The second main difference is that we use reltghiistead of the intra-class correlation
for purposes of assessing power. We assume thefursihdomization is the same as the unit of
measurement and define the reliability at the elulgvel in Equation 15.7.

T

-t 15.7
rT+0%lT [ ]

reliab,, =

The reliability is similar to the intra-class cdagon except that it adjusts for the number of
items within a scale.
The non-centrality parameter can also be defindgdrims of the effect size in equation
15.6 and the level-2 reliability in equation 15/he non-centrality parameter is:
2= (reliab,_,)d”
4/J

Looking at the noncentrality parameter, we cantBatincreasing the reliability increases the

[15.8]

power. Because the reliability is a function of tfagiance and the number of items in a scale and
the variance is typically not under the controtltd researcher, increasing the number of items in
a scale is one method for increasing the relighglitd hence the power of the study. In addition
to the reliability, increasing the number of clustalso increases the power. Finally, larger effect
sizes result in greater power. However, the sizb®kffect is often determined by the
phenomenon under investigation, not by the research

We can generalize the example to any case in wgrimlip quality is measured with
reliability denoted aseliab, including cases in which the reliab takes intcoamt multiple
sources of error, including temporal instabilitydamater inconsistency, for example.
15.4 Using the Optimal Design for two-level clusterandomized trials with a cluster-level
covariate

This section focuses on how to use the Optimal dresoftware to design a two-level
cluster randomized trial with a cluster-level outen The menu for the 2-level CRT with a

cluster level covariate is shown below and candoed by clicking on the following: Desigt
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Cluster randomized trials with cluster-level out@mimeasurement of group process#s)
Cluster randomized triat® Treatment at level 2.
Power on y-axis
Power vs. number of clusterd (
Power vs. effect size (delta)
Power vs. cluster-level reliability (Rel(L2))
MDES on y-axis
MDES vs. number of clusterg)(
MDES vs. powerK)
MDES vs. cluster-level reliability (Rel(L2))

The first set of options present the power on Haxig and either the number of clusters, effect
size, or the cluster-level reliability on the x-sxThe second set of options present the MDES on
the y-axis and either the number of clusters, ppatecluster-level reliability on the x-axis. We
present an example below and guide the user thrihegsteps for approaching the example via
the power determination approach or the effect spggoach.
15.5 Example

Suppose a team of researchers want to measuneplaeti of an intervention on the
guality of functioning at pre-school sites. Theriders of the intervention propose that the
overall quality of functioning will increase withagicipation in their program. They plan assess
the quality of the pre-schools using an observatiorstrument. The researchers plan to
randomly assign pre-school sites to either thertreat or control, hence they have a cluster
randomized trial. Section 15.6 presents a scemmamatich the power determination approach
for conducting a power analysis is most applicabnie the details of how to do the power
analysis using OD. Section 15.7 presents a sceimavitrich the effect size approach is most
applicable and the details of how to do the powaysis using OD.
15.5 Power determination approach for conducting @ower analysis

Based on previous studies that use the same @heeral instrument, the researchers
estimate the pre-school level reliability equalgs0and want to be able to detect a minimum

effect size of 1.0. How many pre-schools are rexglin order to achieve power equal to 0.80?
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In Scenario 1, the number of clustersis unknown. As a result, we want to select the
power vs. number of clusterd) Option. This allows the number of clusters toyvallong the x-
axis. The steps for conducting the power analysiew.
Step 1: Select Desige» Cluster randomized trials with cluster level outas (measurement of
group processesy Cluster randomized triat® Treatment at level 2 Power on y-axis>

Power vs. number of clusterd @s shown in Figure 15.1.

» Optimal Design ] 3]
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Figure 15.1 Initial blank screen for power vs. number of téus ().

The toolbar at the top includes the parametersired|for calculating the power: the effect size
(6) and the reliability of the cluster-level covaéddtelL2). The number of clusterd) does not
appear on the toolbar because it varies along-tivas«

Step 2: Click ord. Set delta(1) = 1.0. Recall that delta in the eds®e2-level CRT for a cluster

level covariate is defined as= a and delta in a 2-level CRT with an individual lecelvariate

Jr
Y

NT+0°

additional parameters to match the values in thecpdar example before we interpret the

is defined a®d = . The default power curves appear. However, we fingsset the

curves.
Step 3: Click on relL2. Set relL2 (1) = 0.75. Tlesulting power curve is in Figure 15.2.
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Figure 15.2 Power curve.
Clicking along the power curve, we can see that@pmately 44 total clusters are required for
the study, 22 in the treatment condition and 2thécontrol condition.

The example provided in this section placed timepda size on the x-axis. However, the
reliability or the effect size could be placed be k-axis and the steps could easily be adapted to
conduct the power analysis.

15.6 Effect size approach for conducting a power atfysis

Based on previous studies that use the same @heeral instrument, the researchers
estimate the pre-school level reliability equalgs0.They have secured 40 classrooms, 20 in the
treatment and 20 in the control. What is the MDE® wower = 0.80?

In Scenario 2, the MDES is unknown so it makes nserese to select an option with the
MDES on the y-axis. One option is to select MDESnsmber of clusters]). This will allow
the user to see how the MDES changes as a funatitire total number of clusters holding the
power constant. Using this approach is very udaitilalso requires that after the MDES is
determined, the researcher consult the literatufsndings from a pilot study to determine if the
MDES is reasonable. The steps for conducting theep@analysis follow.

Step 1: Select Desiger Cluster randomized trials with cluster level outas (measurement for
group processesy Cluster randomized triat® Treatment at level 2 MDES on y-axis>

MDES vs. number of clusterg)(as shown in Figure 15.3.
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Figure 15.3.Blank screen for MDES vs. number of clusters.

Step 2: Click orP. SetP(1) = .80.

Step 3: Click on relL2. Set Reliab(12)(2) = 0.7%€lresulting power curve appears in Figure
15.4.
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Figure 15.4.Power vs. number of clusters.
Clicking on the trajectory reveals that with 40stkrs, the MDES is approximately 1.06.

The examples in this section are meant to proatdgiide to users for how to use the 2-
level CRT with a cluster level outcome. We desdiPewer vs. number of clusted and

MDES vs. number of clusterg)( The other options function similarly, and simphace a
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different parameter on the x-axis. The choice ofchwimodule is most appropriate depends on
the unknown parameters. However, all modules ytleédsame results if identical parameters are
used so the choice depends on what module is rosstly aligned with the known and

unknown parameters in a study.
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16.0 Three-levelcluster randomized trials with a cluster-level outcone

A three level trial with randomization at level ¢deris a commonly used design. For
example, imagine an evaluation for a new elementath program. Schools are randomly
assigned to either the new program or their requiagram. Within each school, all the
classrooms adopt the new program. The effects gitaty the new program are evaluated by
the quality of functioning of a classroom. This me#hat the outcome is being measured at the
level two/cluster level. The measurement usualigseon either observational or interview data,
which means it includes measurement error. The aneasent error as well as the nested
structure of the data has implications for statédtpower. First, we take a closer look at the
models.

16.1 The model

We can think of this as a three level model wHewel one is the measurement model.

the level-1 model is a measurement model. We adgagin with a simplified case in which item

inconsistency is the only source of measurement:err

Yik = i * € Gk ~ N (O, 02) [16.1]
for

t =1,...,T items within a scale

j =1,...,J clusters (classroom in this case)

k =1,...,K sites (school in this case)
where

Y, is the observed outcome for iténm clusterj in sitek
7%, s the mean for clustgrin sitek
& is random error associated with the item

o?is the measurement variance.

The level-2 model is

T = Boo + Mok foj ~ N(O’ Tn) [16.2]
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Boo is the mean for sitle
o) 1S random error associated with the cluster

r,.is the variance between clusters within sites.

The level-3 model is

Book = Voo + VooV + Ugok Uook ~N@©O. 74, ) [16.3]
where

Yooo IS the grand mean

Voo1 IS the treatment effect (“main effect of treatnient

W, is a treatment contrast indicator, 0.5 for treathand —0.5 for control

Uy IS the random error associated with each site mean

75, 1S the residual variance between site means.

16.2 Testing the treatment effect

In the model above, the treatment effect is edgohat level-3 and is denotgg,,. Given

a balanced design, it is estimated by:

Yoo =Ye=Ye [16.4]
where Y is the mean for the experimental group

Y¢c is the mean for the control group.

Because of the nested structure of the data, weosemclusters and sites in order to
estimate the treatment effect. The variance of#tenated treatment effect combines the

variance at all three levels, the variance betwstnmeans, - the within-site or between-

cluster variance,,, and the within-cluster measurement variance,
Assuming balanced allocation of clusters to treatna@d control, the variance of the
treatment effect is estimated by:

A1, +(r,+0°IT)/J]

< [16.5]

Var(yy,) =
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whereT is the number of items within the scalés number of cluster per site aKids
the total number of sites.

To test the null hypothesis of no treatment effet,use aifr statistic.

Ho Voo =0 vS. H, Vo  # O,

TheF test follows a non-centr&d distribution,F(1, K-2; 1) . Recall that the
noncentrality parametet,, is a ratio of the squared-treatment effect tovidrgance of the

treatment effect estimate. Below is the noncenyralarameter for the test.

2
p= Tt AT, +( Kljrgmz/T)/J [16.6]
Var(y 001) [Tﬁ"" Tn %0 ]

16.3 Standardized notation

To reinforce the concept of the measurement medektandardize the model
differently:

Here, we define the standardized effect size below:

o=—Yor__ [16.7]

V Iy + T,Boo

Note that the effect size is divided by the squaog of the level-2 and level-3 variance.

This differs from the three-level model when measugnt occurs at the individual level, which

divides the effect size by the square root of tha sf the level-1, level-2 and level-3 variance.

The reason this effect size is divided by onlylthesl-2 and level-3 variance is because we are

measuring a level-2 process. So we do not use mezasut error to standardize the treatment

effect.

Since we are measuring the outcome at the classlea@t) the measurement reliability is

the key factor which would affect the power of gtedy. The measurement reliability at the
classroom is:

. T
rellabL2 = ﬁ [168]

Also, the percentage of variance of average tre@teféect between schools is:

g
Peves =, [169]

156



Notice that here the percentage of variance betwekools to the total variance is
different from the intra-class correlatign, ., in the 3-level CRT because the first level is a
measurement model whose variance is measuremerns.err

In standardized notation, the non-centrality part@me , can be rewritten as:

2
)= Ko [16.10]

1_ loleveB
+ _
Z{p'“e“ J* renaqzj

Recall that increasing the noncentrality paramieieneases the power to detect the

treatment effect. The size of the treatment effeoften based on theory, past studies, or a pilot
study which means the researcher cannot inflatsiteeof the treatment effect to increase power
without decreasing the theoretical or practicalatesions of the study. Equation 10 reveals that
decreasing the variance between sites will incrédas@ower. The OD allows the user to enter a

site-level covariate which can reducg . However, ther, and o*are not under the control of

the researcher. Equation 16.10 also reveals thegasing the measurement reliability increases
the power. For example, we can either increasauhngber of items during measuring, T to
increase the level two reliability. Indeed, frorruatjon 16.10, we can see that increasing the
number of site, or number of clusterg, can also increase the power.
16.4 Using the Optimal Design for three-level clust randomized trials with a cluster-level
covariate

This section focuses on how to use the Optimal gresoftware to design a three-level
cluster randomized trial with a cluster-level oute The menu for the 3-level CRT with a
cluster level outcome is shown below and can baddwy clicking on the following: Design ->
Cluster randomized trials with cluster-level out@mimeasurement of group processes) ->
Cluster randomized trials -> Treatment at level 3.
Power on y-axis

Power vs. number of level-2 unit$) (

Power vs. number of level-3 units)(

Power vs. effect size (delta)

Power vs. intraclass correlation at level-3 (rho)

Power vs. reliability at level-2 (Rel(L2))
MDES on y-axis
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Power vs. number of level-2 unit$) (

Power vs. number of level-3 units)(

Power vs. powerR)

Power vs. intraclass correlation at level-3 (rho)

Power vs. reliability at level-2 (Rel(L2))

The first set of options present the power on Haxig and the second set of options present the
MDES on the y-axis. We present an example belowgande the user through the steps for
approaching the example via the power determinatpproach or the effect size approach.
16.5 Example

Suppose a team of researchers is interested efféet of a new comprehensive school
reform (CSR) on the organization of a classroone TSR is implemented at the school level.
Schools are randomly assigned to either the CSReirregular teaching methods. The
organization of the school will be measured viabservational instrument. Data from other
studies were obtained prior to this study. Thisbéehthe researchers to estimate the reliability
at the school level. Their estimate took into acttdamporal variability and observer variability
since schools were assessed at different timebyddferent people. Assume the reliability at
the school level was 0.75, and intraclass corias 0.15. Section 16.6 presents a scenario in
which the power determination approach for conahgcé power analysis is most applicable and
the details of how to do the power analysis usiily Section 16.7 presents a scenario in which
the effect size approach is most applicable andi¢hails of how to do the power analysis using
OoD.

16.6 Power determination approach for conducting @ower analysis

The researchers secure 14 classrooms per schmj.are interested in an effect size of
0.75. How many schools are required in order toeae power equal to 0.807?

In Scenario 1, the number of level-3 unKsjs unknown. As a result, we want to select
the power vs. number of level-3 unit§)(Option. This allows the number of schools to vary
along the x-axis. The steps for conducting the pamalysis follow.

Step 1: Select Desiger Cluster randomized trials with cluster level outms (measurement of
group processesy Cluster randomized triat® Treatment at level  Power on y-axis

—>Power vs. number of level-3 unik§(as shown in Figure 16.1.
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Figure 16.1 Initial blank screen of Power vs. level-3 unk9.(

Step 2: Click onl. SetJ(1) = 8.

Step 3: Click ord. Set delta(1) = 0.75.

Step 4: Click omp. Set rho (1) = 0.15.

Step 5: Click on relL2. Set relL2 (1) = 0.75. Theener curve is in Figure 16.2.

» Dptimal Design ] 3]
File Design Working Help
. Measurement of Group Processes - 3-level CRT - Power ¥s. num ol x|

at| 7| 8| p|mu|rd s 12 |reom] @ ]as] x|

.= 0.050
J=5,6= 075 p= 015 REL= 0.75

0E

05

~ofoT

04

03 A

02+

01 A

15 28 37 48 29

Mumber of level 3 units

Figure 16.2. Power curve.
Clicking along the power curve, we can see that@pmately 54 total clusters are required for

the study, 27 in the treatment condition and 2thecontrol condition.
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The example provided in this section placed timepda size on the x-axis. However, the
other parameters could be placed on the x-axigtandteps could easily be adapted to conduct
the power analysis.

16.6 Effect size approach for conducting a power atfysis

The researchers have secured 40 schools, 20 tretitenent and 20 in the control and 10
classes per school. What is the MDES with power89?

In Scenario 2, the MDES is unknown so it makes nserese to select an option with the
MDES on the y-axis. One option is to select MDESnsnber of level-3 unit¥K(). This will
allow the user to see how the MDES changes asdidumof the total number of schools holding
the power constant. Using this approach is verjulibeit also requires that after the MDES is
determined, the researcher consult the literatufsdings from a pilot study to determine if the
MDES is reasonable. The steps for conducting theep@analysis follow.

Step 1: Select Desiger Cluster randomized trials with cluster level outas (measurement for
group processesy Cluster randomized triat® Treatment at level & MDES on y-axis>

MDES vs. number of level-3 unit&) as shown in Figure 16.3.

=1gix]

Fls Design Workng Help
- Measurement of Group Pros =181
o T |P | P |me|rd|os] 12 |ee]om] @ ]as] x|

Figure 16.3 Blank screen for MDES vs. number of clusters.
Step 2: Click onl. SetJ(1) = 10.

Step 3: Click orP. SetP(1) = .80.

Step 4: Click omp. Set rho (1) =0.15

160



Step 5: Click on relL2. Set Reliab(12)(2) = 0.7%€lresulting power curve appears in Figure
16.4.

RER
File Design Help

i
o TP | p[ardsnelsn| k2| e]owe] @ |as | X]

5
s o =0.050
J=10F= 0.80,p= 0.15,REL= 0.75

0.9

0.8

B o @

0.6

@M

0.4

0.2 o

Number of level 3 units

Figure 16.4 Power vs. number of level 3 units.
Clicking on the trajectory reveals that with 40stkrs, the MDES is approximately 0.47.

The examples in this section are meant to proatdgiide to users for how to use the 2-
level CRT with a cluster level outcome. We desaiBewer vs. number of level-3 units)(and
MDES vs. number of level-3 unit&). The other options function similarly, and simplace a
different parameter on the x-axis. The choice oifclwimodule is most appropriate depends on
the unknown parameters. However, all modules ytleédsame results if identical parameters are
used so the choice depends on what module is rosstly aligned with the known and

unknown parameters in a study.
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17.0 Multi-site cluster randomized trials with a clster-level outcome

A multi-site cluster randomized trial with a clestevel outcome is a blocked design. For
example, imagine an evaluation for a new charatggelopment program. Within schools,
classrooms are randomly assigned to either thepmegram or their regular program. The
effects of adopting the new program are evaluayeith® quality of functioning of a classroom.
This means that the outcome is being measurec &l two/cluster level. The measurement
usually relies on either observational or intervigata, which means it includes measurement
error. The measurement error as well as the nestecture of the data has implications for
statistical power. The treatment of blocks, or sdt0as fixed or random effects also has
implications for power. First, we take a closerdat the models.
17.1The model

We can represent data from a MSCRT as a three hewdél where the lowest level is the
measurement model, level-two is the cluster levatieh, and the highest level is the site/block
level model. Note that the cluster is the unitasfdomization and the unit of measure. Any
variation below the level of the cluster contrilsite the measurement error including temporal
variation, observer variation, individual variatjar item variation. Assuming items constitute

the sole source of error, the level-1 model is:

Vi = Tloge + €y, & ~N©.0) [17.1]
for

t =1,...,T items within a scale

j =1...,J clusters

k=1,...,K blocks
where

Y,

i Is the observed outcome for iterim cluster in blockk
7%, s the mean for clustgrin blockk
& is random error associated with the item

Note that equation 1 represents a very simple nmeasnt model and temporal or observer
variation could also be modeled at this level.

The level-2 model is:
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Thi = Book * ﬁO]ijk * Tojc foj ~ N(O’ Tn) [17.2]

Booc 1S the mean for sitle
Boyi is the treatment effect at ske

W, is a treatment contrast indicator, %2 for treatneedt - for control

o) 1S random error associated with the cluster
The level-3 model is

Boo = Yooo * Yoo Uk ~N(©,75 ) uy, ~N(O, )

[17.3]
Bow = Voro + Yo

COV(Uggy , Upy) = Tp,
where

YooolS the grand mean
Yo10lS the average treatment effect
Uy IS the random error associated with each site mean

Uy, IS the random error associated with each sitertreat effect.

17.2 Testing the treatment effect

We are interested in the main effect of treatmepf, which is estimated by:
Voro=Ye—Yc [17.4]

whereY e is the mean for the experimental group ahis the mean for the control group.
Assuming balanced allocation of clusters to treatna@d control, the variance of the
estimated treatment effect is:

r,.+o0’lT
T4

K

Var(yy,) = [17.5]
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whereT is the number of items within the scalés the number of clusters per site, & the
total number of sites.

To test the null hypothesis of no treatment effeet,use aifr statistic.

Ho Voro=0 VS. H, 1 V10 % O,

TheF test follows a non-centréd distribution,F(1, K-1; 1) . Recall that the
noncentrality parametet,, is a ratio of the squared-treatment effect tovidrgance of the

treatment effect estimate. Below is the noncenyralarameter for the test.

1= Yoo - K ¥o01
N 2 -
var(y,y,) I, + {Wj
J

17.3 Standardized Notation
To reinforce the concept of the measurement medektandardize the model differently
and reconceptualize it in terms of reliability st of intra-class correlations. We define the

standardized effect size below:

g = Yoo [17.6]

N

Note that the effect size is divided by the squace of the between cluster variance. Recall that
this is because we are standardizing at the sarektleat we are randomizing. We must also

define the effect size variability in this same neas the effect size. It is:
o5 =4 [17.7]

In addition to the new effect size and effect siagability, we define the cluster level
reliability as:

TIT
T+ 7T 1478l

reliab, , =
We want the level-2 reliability because we are mmizing and measuring at level:2
The non-centrality parameter can be defined ims$eof the new effect size and the level-

2 reliability. The non-centrality parameter is:

Note that the standardized values depend on thrkneeving the within-block between-cluster vanané"g,. Because this value is typically

unknown prior to blocking, the Optimal Design praxgrasks for the standardized values prior to bfagkis well as the percentage of variance
explained by the blocking variable and calculatesstandardized values within the program.
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1= Ko? ©)

o2 +4/ J(reliab,,)

Recall that the larger the non-centrality parameter greater the power of the test. Thus it is
clear that increasing the reliability, the numbgsites, and the number of clusters per site are
three options that the researcher has to incrbéasgawer. Increasing the effect size also
increases power but is typically not set by theaesher.
17.4 Using the Optimal Design for multisite clusterandomized trials with a cluster-level
covariate

This section focuses on how to use the Optimal gresoftware to design a multisite
cluster randomized trial with a cluster-level oute The menu for the MSCRT with a cluster
level covariate is shown below and can be foundlicking on the following: Desigr> Cluster
randomized trials with cluster-level outcomes (nueesient of group processe3)Multisite (or
blocked) cluster randomized trias Treatment at level 2. The menu is below.
Power on y-axis

Power vs. number of siteK)X

Power vs. number of clusterd (

Power vs. effect size (delta)

Power vs. cluster-level reliability (Rel(L2))
MDES on y-axis

MDES vs. number of site&J

MDES vs. number of clusterd)(

MDES vs. powerK)

MDES vs. cluster-level reliability (Rel(L2))

The first set of options present the power on Haxig and either the number of sites, number of
clusters, effect size, or the cluster-level religbon the x-axis. The second set of options
present the MDES on the y-axis and either the numbsites, number of clusters, power, or
cluster-level reliability on the x-axis. We presantexample below and guide the user through
the steps for approaching the example via the poermination approach or the effect size
approach.

17.5 Example
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Suppose a team of researchers want to measunaplaeti of an intervention on the
quality of functioning in elementary classroomseThsearchers hypothesize that the overall
quality of functioning will increase with participan in their program. They plan to assess the
guality of the classrooms using an observationgttinment. The researchers plan to randomly
assign 8 classrooms within schools to either thatinent or control condition. Thus schools act

as blocks, or sites, and classrooms are withirsitles. They hypothesize that blocking will

explain 20% of the variation in the outcome. Theegrchers expect there to be variability across

sites so they plan to use a random effects modale® on previous studies, they expect the
effect size variability to be approximately 0.1@c8on 17.6 presents a scenario in which the
power determination approach for conducting a pamalysis is most applicable and the details
of how to do the power analysis using OD. SectidrY bresents a scenario in which the effect
size approach is most applicable the details of twodo the power analysis using OD.

17.5 Power determination approach for conducting @ower analysis

Based on previous studies that use the same @ltgaral instrument, the researchers
estimate the reliability equals 0.75 and want t@blke to detect a minimum effect size of 0.50.
How many schools are required in order to achiewegp equal to 0.80?

In Scenario 1, the number of schools or sitkess unknown. As a result, we want to
select the power vs. number of clusté @ption. This allows the number of sites to vaong
the x-axis. The steps for conducting the poweryamsafollow.

Step 1: Select Desige» Cluster randomized trials with cluster level outas (measurement of
group processesy Multisite cluster randomized triat3 Treatment at level 2 Power on y-

axis> Power vs. number of siteK) as shown in Figure 17.1.
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Figure 17.1 Blank screen for Power vs. number of sit€p (

The toolbar at the top includes the parametersiredjfor calculating the power: the number of

clusters per sitel}, the effect sized), the effect size variabilityd?),the reliability of the

cluster-level covariate (relL2), and the percentariance explained by blocking. The number of
sites K) does not appear on the toolbar because it valoeg) the x-axis.

Step 2: Click onl. SetJ(1) = 8.

Step 3: Click ord. Set delta(1) = 0.50. Recall that delta in theeaafsa 2-level CRT for a cluster

level covariate is defined a§= - . The default power curves appear. However, we ffimsst

Jr

set the additional parameters to match the valuésel particular example before we interpret

the curves.
Step 4: Click ong’. Seto;=0.10.

Step 5: Click on relL2. Set relL2 (1) = 0.75.
Step 6: Click on B. Set B(1) = 0.20. The resultingve appears in Figure 17.2.
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Figure 17.2 Power curve.
Clicking along the power curve, we can see that@pmately 23 total sites or schools are
required for the study with 8 classrooms per school

The example provided in this section placed tmepda size on the x-axis. However, the
reliability or the effect size could be placed be k-axis and the steps could easily be adapted to
conduct the power analysis.

17.6 Effect size approach for conducting a power afysis

Based on previous studies that use the same @ltgaral instrument, the researchers
estimate the reliability equals 0.75. They havausstt 8 classrooms per school and 20 schools.
What is the MDES with power = 0.80?

In Scenario 2, the MDES is unknown so it makes nserese to select an option with the
MDES on the y-axis. One option is to select MDESnsmber of sitesK). This will allow the
user to see how the MDES changes as a functidmeafiumber of sites holding all other
parameters constant. Using this approach is vesfulbut also requires that after the MDES is
determined, the researcher consult the literatufsdings from a pilot study to determine if the
MDES is reasonable. The steps for conducting tveepa@analysis follow.

Step 1: Select Desiger Cluster randomized trials with cluster level outas (measurement for
group processes) -> Multisite cluster randomizedstr> Treatment at level 2 MDES on y-
axis=> MDES vs. number of site&f as shown in Figure 17.3.
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Figure 17.3. Initial blank screen for MDES vs. number of si{&3.
Step 2: Click onl. SetJ(1) = 8.
Step 3: Click orP. SetP(1) = 0.80.

Step 4: Click ono;. Seto;=0.10.

Step 5: Click on relL2. Set Reliab(12)(1) = 0.75.

Step 6: Click on B. Set B(1) = 0.20. The resulfooyver curve appears in Figure 17.4.
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Figure 17.4 Power curve.

Clicking along the trajectory reveals a MDES off®vith 20 schools.
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The examples in this section are meant to proatdgiide to users for how to use the
MSCRT with a cluster level outcome. We described/@&ovs. number of clusterd)(and MDES
vs. Power ). The other options function similarly, and simplace a different parameter on
the x-axis. The choice of which module is most appate depends on the unknown parameters.
However, all modules yield the same results if tieh parameters are used so the choice
depends on what module is most closely aligned thighknown and unknown parameters in a

study.
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Appendix A — Meta-Analysis

Model specification and estimation, hypothesis testnd power computations

Given a number of studies sharing the same hypisthtbe idea is to obtain the common
minimum detectable effect size at a given levedtafistical power based on select summary
statistics from each of the studies. In other wptids goal is to perform a power analysis for a

meta-analysis (also called a research synthesis).

Our formulation rests on the following assumptions:

1. The studies to be included in the meta-analysisesh@ommon hypothesis.

2. Estimates of the effect size and the standard efrthre effect size are accessible in
standardized form for each study and have beeeadyrcalculated.

3. The studies are independent.

The data available can be seen as having a higalastructure in which the units under
study are nested within studies, with some vammalying between the units in any one particular
study and some variation lying across studies. gidiask the meta-analyst faces is to determine
whether the results are consistent across studiksfahe results are not consistent, determine
why the results change from any one study to thx¢ ierarchical models provide a helpful
framework for dealing with this type of data (Rankesh and Bryk, 2002, Chapter 7).

In a meta-analysis, typically summary statisties arailable from each study while the
raw data are rarely accessible. The statisticalahgpecified in this section is built on this
premise. That is, we assume estimates of the tesdtaffect size and corresponding standard
error are accessible from each study.

One potential complication is that outcome measaresiot necessarily the same across
individual studies, even if they target the samecept. To address this problem, meta-analysts
typically use standardized measures of treatmdettsf translating the results of any one
particular study to a common scale. Suppose therg&studies being considered, each study

having a standardized effect size estimate dermtet] for j ={12,,....J}. In the context of

program evaluation, this standardized effect sigghtrbe the standardized mean difference
between the experimental and the control groupgngby
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i [A.1]

Where\?iE is the average for those in the experimental cardfor study j;

\7jc is the average for those in the control conditionstudy j; and
S, is the pooled standard deviation for stydy
In other words d; is an estimate of the mean difference betweenxperemental and control

groups in standard deviation units for stydy

Suppose estimates of the treatment effect sizeohtiee standard error of the treatment
effect size are available for eachJadtudies. Data can then be modeled with a two-level
hierarchical model. The level-1 (within-studies)aebwould be

d, =90, +e;, with, e, ~ N(O,Vj) [A.2]

where 9, is the treatment effect for stugiand

e; is the level-1 random error, normally distributeith mean 0 and known variantg .
The unconditional level-2 (between-studies) modeld be

3, =0+u, with u, ~N(0,7), [A.3]
where 6@ is the average treatment effect across studies éifect size) and

u; is a level-2 random error, normally distributediwiean 0 and variance.

The level-1 and level-2 models above yield theolwlhg mixed model:
d,=@+u, +e,,  withe ~N(OV,) andu; ~N(0,7). [A.4]
From the model above, it follows th&ld, )= 6 and

Var(d;) = Var(u;) + Var(e,)
=7 +VJ.
= parametewariancet error varance
=4,.

If sample sizes vary across studies, edgltan be seen as an unbiased estimatér with

variancel ;. The precision ofi; is defined as the reciprocal of its variance:

Precisiofid;) = A7
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If the A;’s are known (or estimated consistently, the maxmiielihood estimator (minimum-

variance unbiased estimator) @fis the precision-weighted average:

e e — [A.5]

If all the studies have the same sample size,xpeession above can be reduced to the simple

average

6=, [A.6]

The precision of is the sum of its precisions:

Precisior(é) = ZJ:A‘jl

=1

:i(r+vj )_l

= [A.7]
and its variance is the inverse of its precision
3 -1
Var(d) = {Z(r +V, )‘1} . [A.8]
=1
Example

Suppose a researcher is interested in calculdimgawer of a meta-analysis with 19
studies. For each individual study, the researbhseran estimate of the effect size and its

variance. The data is displayed in Table A.1.
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Table A.1. Sample data for meta-analysis. Colunsortesponds to the effect size for the study
and column 2 corresponds to the variance.

0.03 0.016
0.12 0.022
-0.14 0.028
1.18 0.139
0.26 0.136
-0.06 0.011
-0.02 0.011
-0.32 0.048
0.27 0.027
0.8 0.063
0.54 0.091
0.18 0.050
-0.02 0.084
0.23 0.084
-0.18 0.025
-0.06 0.028
0.3 0.019
0.07 0.009
-0.07 0.030

Note. This data is from the effect of teacher ebgrey on Pupil 1Q (from Chapter 7 of Raudenbush Bngk, 2002,
p. 211).

The following steps are needed to estimate the pota meta-analysis:
Stepl: Click on Design -> Meta-analysis -> Readaiaénerate Variance. Figure A.1 displays

the menu that appears.

174



Meta Analyis - Read Data/Make Graph

Input file name: ||

|Ascu |

Cases read:

Input file type:

Read Data |

Level 2 variance:

Browse

Make graph

Ei b

Cancel

Figure A.1. Menu for meta-analysis.

Step 2: Click on Browse. Find the file that consaihe data. The data file can be in

SPSS, Excel, or any package. However, it shoulsbled as a .dat or a .csv file. The data needs

to be organized in two columns, the first with #fect size and the second with the variance.

The number of rows should correspond to the nurabstudies being considered. Table

A.lcontains sample data for this example.

Step 3: Click on Read Data. This allows the ODetdrthe data. The number of cases read and

level 2 variance will be displayed as shown in Fega.2.

IC:‘tDucuments and Settings\spybrookJ\Desktop\sz

| Ascl |

Cases read: 19

Input file name:

Input file type:

Level 2 variance:  0.019310

Browse

Make graph

Cancel

d

Figure A.2. Cases read and level two variance.

Step 4: Click on Make Graph. The graph appearsgarg A.3. Clicking on the graph reveals

power of 0.80 for an effect size of 0.144.
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Figure A.1. Power curve for meta-analysis.

176



Appendix B — Optimal Sample Allocation

The cluster randomized trial with person level oates, treatment at level 2, also has an
option for optimal sample allocation.

The total variable cost of data collection can e reasonably approximated by the
formula below:

T=J(Cn+C,) [B.1]
whereJ = number of clusters;

n = number of participants within a cluster;

C, = cost per participant;

C, = cost per cluster; and

T = total cost.

To calculate the optimal sample size, first find tptimaln and then find the optimal

The optimaln in this case is that which minimizes the variaotthe treatment effect in

equation B.2:
Var(y,,) = A'(T%Uzln) . [B.2]
SubstitutingJ = + (a simple rearrangement of the cost equationyaindmizing the
116
equation with respect tg we obtain the formula for optimal
g . |C2 [B.3]

Nopt :T C_l
where o is the within cluster standard deviation;

Jr is the between cluster standard deviation;

C.is the cost per person; and

C, is the cost per cluster

From the formula, we can see as the within-clugigiance increases relative to the
between-cluster variance, optinmaincreases. Intuitively this makes sense. If thetarge
variation within clusters, we would want to samplere people in each cluster to represent that

variation. However, if the within cluster variati@very small, optimah decreases. In this case,
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we want fewer people in each cluster because nidsewariation is between clusters so adding
more people will not be very helpful. In terms bétcost ratio, if the cost per cluster becomes
increasingly larger than cost per person we aralpsd for adding clusters and the optimal
increases. After the optimalis found, the number of clusters can be calculbteglugging

backn into the formula fod:

) nc; C, [B.4]
The cost per cluster and cost per person may beeatie in the control and experimental groups
or it may differ. The remainder of this chapterkeat optimal sample allocation when costs of
sampling the two groups are equal and when thepatrequal.
Equal Costs

The simplest case is when the sampling costs arsaime for the treatment and control
groups. The following example illustrates how técakate the optimah and the resulting to
minimize the variance for a fixed budget.

A researcher wants to determine the effect of a ehesg prevention program in schools.
The total budget for sampling costs is $10000. ddst per cluster (§ is $400 and cost per
person (G) is $20. The estimated intra-class correlatiorffament is 0.05. What is the optimal
n? How many clusters will be in the study? Usingrfatas 16 and 17 described above, the

optimaln andJ can be computed by hand as shown below.

Step 1: Set+¢? =1, sor =pando? =1- p. For this example; =.05 ando?=.95
Step 2: Calculate/r =.2236 and+o® =.9747

Step 3: Find the cost ratieCC:—2 = 400/20 = 20

1

Step 4: Set up the equatiog,, = %* /%) =20

Plugging 20 intoJ :% yieldsJ = 12.5 which is rounded down to 12 in order to stay
n 1 2

within budget. The value of the variance of thatmeent effect can also be calculated by
plugging inn andJ to the variance equation.
The Optimal Design software can be used to do tbaleeilations. The software produces

a plot as shown below:
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Figure B.1.0Optimal allocation curve.
The plot allows the researcher to see how the @btinthanges with respect to the intra-class
correlation coefficient. Notice that gs increases, optimal n decreases. In other wordsere
is large between-cluster variance then it is noy Welpful to increase the number of people per
cluster and more money should be spent tryingdeease the number of clusters.

Notice that in the previous example there wer@ower calculations or set effect sizes.
If the desired effect size is specified, then thri@al Design software can be used to calculate
the optimaln andJ that maximizes power. For example, recall in tkeneple above that:
T=$10,000, G=$400, G=%$20, andgp = 005. Imagine that the desired effect size is 0.40.
Plugging these values into the OD software whidliesoforn andJ to maximize the power
reveals an optimal = 18,J =13, and power = 0.53. Knowing that the powemly ®.53 and
acceptable power levels are typically 0.80 or higtiee researcher may need to try to increase

the budget in order to achieve higher power.
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